Suppr超能文献

凝集素DC-SIGN的非碳水化合物抑制剂

Non-carbohydrate inhibitors of the lectin DC-SIGN.

作者信息

Borrok M Jack, Kiessling Laura L

机构信息

Department of Biochemistry and Chemistry, University of Wisconsin, Madison, WI 53706, USA.

出版信息

J Am Chem Soc. 2007 Oct 24;129(42):12780-5. doi: 10.1021/ja072944v. Epub 2007 Sep 29.

Abstract

The C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is found on the surface of dendritic cells. It can mediate adhesion between dendritic cells and T lymphocytes and facilitate antigen capture and presentation. Many pathogens can exploit DC-SIGN binding for nefarious purposes. For example, DC-SIGN can facilitate the dissemination of viruses, like HIV-1. Alternatively, some microbes (e.g., Mycobacterium tuberculosis) use their ability to interact with DC-SIGN to evade immune detection. The diverse roles attributed to DC-SIGN provide impetus to identify ligands that can be used to explore its different functions. Such compounds also could serve as therapeutic leads. Most of the DC-SIGN ligands studied previously are mannose- or fucose-derived monosaccharides or oligosaccharides with inhibitory constants in the range of 0.1-10 mM. To identify monovalent ligands with more powerful DC-SIGN blocking properties, we devised a high-throughput fluorescence-based competition assay. This assay afforded potent non-carbohydrate, small molecule inhibitors (IC50 values of 1.6-10 microM). These compounds block not only DC-SIGN-carbohydrate interactions but also DC-SIGN-mediated cell adhesion. Thus, we anticipate that these non-carbohydrate inhibitors can be used to illuminate the role of DC-SIGN in pathogenesis and immune function.

摘要

C型凝集素树突状细胞特异性细胞间粘附分子3结合非整合素(DC-SIGN)存在于树突状细胞表面。它可介导树突状细胞与T淋巴细胞之间的粘附,并促进抗原捕获和呈递。许多病原体可利用DC-SIGN结合来达到 nefarious目的。例如,DC-SIGN可促进病毒(如HIV-1)的传播。另外,一些微生物(如结核分枝杆菌)利用其与DC-SIGN相互作用的能力来逃避免疫检测。赋予DC-SIGN的多种作用促使人们去鉴定可用于探索其不同功能的配体。这些化合物也可作为治疗先导物。先前研究的大多数DC-SIGN配体是甘露糖或岩藻糖衍生的单糖或寡糖,其抑制常数在0.1-10 mM范围内。为了鉴定具有更强DC-SIGN阻断特性的单价配体,我们设计了一种基于荧光的高通量竞争测定法。该测定法提供了有效的非碳水化合物小分子抑制剂(IC50值为1.6-10 microM)。这些化合物不仅阻断DC-SIGN与碳水化合物的相互作用,还阻断DC-SIGN介导的细胞粘附。因此,我们预计这些非碳水化合物抑制剂可用于阐明DC-SIGN在发病机制和免疫功能中的作用。

相似文献

1
Non-carbohydrate inhibitors of the lectin DC-SIGN.
J Am Chem Soc. 2007 Oct 24;129(42):12780-5. doi: 10.1021/ja072944v. Epub 2007 Sep 29.
2
Monovalent mannose-based DC-SIGN antagonists: targeting the hydrophobic groove of the receptor.
Eur J Med Chem. 2014 Mar 21;75:308-26. doi: 10.1016/j.ejmech.2014.01.047. Epub 2014 Jan 31.
3
Synthesis of novel DC-SIGN ligands with an alpha-fucosylamide anchor.
Chembiochem. 2008 Aug 11;9(12):1921-30. doi: 10.1002/cbic.200800139.
5
DC-SIGN antagonists, a potential new class of anti-infectives.
Curr Med Chem. 2012;19(7):992-1007. doi: 10.2174/092986712799320664.
8
Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists.
ACS Chem Biol. 2012 Sep 21;7(9):1603-8. doi: 10.1021/cb300260p. Epub 2012 Jul 19.

引用本文的文献

1
Lewis-X-Containing Triterpenoid Saponins Inhibit DC-SIGN- and L-SIGN-Mediated Transfer of HIV-1 Infection.
Chemistry. 2025 Jun 6;31(32):e202500993. doi: 10.1002/chem.202500993. Epub 2025 May 6.
2
Glycomimetics for the inhibition and modulation of lectins.
Chem Soc Rev. 2023 Jun 6;52(11):3663-3740. doi: 10.1039/d2cs00954d.
3
Multicomponent reaction derived small di- and tri-carbohydrate-based glycomimetics as tools for probing lectin specificity.
Glycoconj J. 2022 Oct;39(5):587-597. doi: 10.1007/s10719-022-10079-3. Epub 2022 Aug 24.
4
Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold.
ACS Med Chem Lett. 2022 May 10;13(6):935-942. doi: 10.1021/acsmedchemlett.2c00067. eCollection 2022 Jun 9.
5
Medicinal chemistry of the myeloid C-type lectin receptors Mincle, Langerin, and DC-SIGN.
RSC Med Chem. 2021 Sep 16;12(12):1985-2000. doi: 10.1039/d1md00238d. eCollection 2021 Dec 15.
7
A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN.
J Am Chem Soc. 2021 Nov 17;143(45):18977-18988. doi: 10.1021/jacs.1c07235. Epub 2021 Nov 8.
10
Non-Carbohydrate Glycomimetics as Inhibitors of Calcium(II)-Binding Lectins.
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8104-8114. doi: 10.1002/anie.202013217. Epub 2021 Mar 3.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
3
4
Antiviral agents active against influenza A viruses.
Nat Rev Drug Discov. 2006 Dec;5(12):1015-25. doi: 10.1038/nrd2175.
5
Dendritic-cell interactions with HIV: infection and viral dissemination.
Nat Rev Immunol. 2006 Nov;6(11):859-68. doi: 10.1038/nri1960.
6
A novel class of potent nonglycosidic and nonpeptidic pan-selectin inhibitors.
J Med Chem. 2006 Oct 5;49(20):5988-99. doi: 10.1021/jm060468y.
7
Chemical probes of UDP-galactopyranose mutase.
Chem Biol. 2006 Aug;13(8):825-37. doi: 10.1016/j.chembiol.2006.06.007.
8
Mannose hyperbranched dendritic polymers interact with clustered organization of DC-SIGN and inhibit gp120 binding.
FEBS Lett. 2006 May 1;580(10):2402-8. doi: 10.1016/j.febslet.2006.03.061. Epub 2006 Mar 31.
9
Inhibition and detection of galectins.
Chembiochem. 2006 May;7(5):721-8. doi: 10.1002/cbic.200600011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验