Boutin Claude
Laboratoire Geomateriaux, DGCB URA CNRS 1652, Ecole Nationale des Travaux Publics de l'Etat, 69518 Vaulx-en-Velin Cedex, France.
J Acoust Soc Am. 2007 Oct;122(4):1888-905. doi: 10.1121/1.2756755.
This paper describes the long wave scattering effect in gas saturated porous media using the homogenization method. To investigate the deviation from the continuum description, the multiscale asymptotic expansions are developed up to the third order. The leading (zeroth) order leads to the Biot-Allard continuum description. The correction of first order induces nonlocal terms in the dynamic Darcy law and thermal behavior, without modifying the wave characteristics. The correction of second order introduces additional dispersion effects on the velocity and attenuation. This theoretical approach is illustrated by analytical results in the simple case of a periodic array of slits.
本文采用均匀化方法描述了气体饱和多孔介质中的长波散射效应。为了研究与连续介质描述的偏差,发展了直至三阶的多尺度渐近展开。主导(零阶)项得到了比奥 - 阿拉德连续介质描述。一阶修正导致动态达西定律和热行为中出现非局部项,但不改变波的特性。二阶修正对速度和衰减引入了额外的色散效应。在周期性狭缝阵列的简单情况下,通过解析结果说明了这种理论方法。