Guzzo Massimiliano, Bernardi Olga, Cardin Franco
Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova, via Trieste 63, 35121 Padova, Italy.
Chaos. 2007 Sep;17(3):033107. doi: 10.1063/1.2756264.
We provide a new method for the localization of Aubry-Mather sets in quasi-integrable two-dimensional twist maps. Inspired by viscosity theories, we introduce regularization techniques based on the new concept of "relative viscosity and friction," which allows one to obtain regularized parametrizations of invariant sets with irrational rotation number. Such regularized parametrizations allow one to compute a curve in the phase-space that passes near the Aubry-Mather set, and an invariant measure whose density allows one to locate the gaps on the curve. We show applications to the "golden" cantorus of the standard map as well as to a more general case.
我们提供了一种在拟可积二维扭转映射中定位奥布里 - 马瑟集的新方法。受粘性理论的启发,我们引入了基于“相对粘性和摩擦”这一新概念的正则化技术,该技术使人们能够获得具有无理旋转数的不变集的正则化参数化。这种正则化参数化使人们能够计算相空间中一条经过奥布里 - 马瑟集附近的曲线,以及一种不变测度,其密度能让人确定曲线上的间隙。我们展示了该方法在标准映射的“黄金”环面以及更一般情况下的应用。