Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Street 24/25, D-14476 Potsdam-Golm, Germany.
Chaos. 2010 Sep;20(3):033114. doi: 10.1063/1.3458896.
We present a computational study of a visualization method for invariant sets based on ergodic partition theory, first proposed by Mezić (Ph.D. thesis, Caltech, 1994) and Mezić and Wiggins [Chaos 9, 213 (1999)]. The algorithms for computation of the time averages of observables on phase space are developed and used to provide an approximation of the ergodic partition of the phase space. We term the graphical representation of this approximation--based on time averages of observables--a mesochronic plot (from Greek: meso--mean, chronos--time). The method is useful for identifying low-dimensional projections (e.g., two-dimensional slices) of invariant structures in phase spaces of dimensionality bigger than two. We also introduce the concept of the ergodic quotient space, obtained by assigning a point to every ergodic set, and provide an embedding method whose graphical representation we call the mesochronic scatter plot. We use the Chirikov standard map as a well-known and dynamically rich example in order to illustrate the implementation of our methods. In addition, we expose applications to other higher dimensional maps such as the Froéschle map for which we utilize our methods to analyze merging of resonances and, the three-dimensional extended standard map for which we study the conjecture on its ergodicity [I. Mezić, Physica D 154, 51 (2001)]. We extend the study in our next paper [Z. Levnajić and I. Mezić, e-print arXiv:0808.2182] by investigating the visualization of periodic sets using harmonic time averages. Both of these methods are related to eigenspace structure of the Koopman operator [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)].
我们提出了一种基于遍历分割理论的不变集可视化方法的计算研究,该方法最初由 Mezić(加州理工学院博士论文,1994 年)和 Mezić 和 Wiggins [Chaos 9, 213 (1999)]提出。我们开发了计算相空间上可观测量的时间平均值的算法,并将其用于提供相空间遍历分割的近似。我们将这种基于可观测量时间平均值的近似的图形表示称为中时图(来自希腊语:meso-mean,chronos-time)。该方法可用于识别不变结构的低维投影(例如,二维切片),这些不变结构在维度大于二维的相空间中。我们还引入了遍历商空间的概念,通过将一个点分配给每个遍历集来获得,并且提供了一种嵌入方法,我们将其图形表示称为中时散点图。我们使用 Chirikov 标准映射作为一个众所周知的动态丰富的例子来说明我们方法的实现。此外,我们还将应用于其他高维映射,例如 Froéschle 映射,我们利用我们的方法来分析共振的合并,以及三维扩展标准映射,我们研究其遍历性的猜想[I. Mezić,Physica D 154, 51 (2001)]。我们在接下来的论文[Z. Levnajić和 I. Mezić,e-print arXiv:0808.2182]中扩展了这项研究,通过使用谐波时间平均值研究周期集的可视化。这两种方法都与 Koopman 算子的特征空间结构有关[I. Mezić 和 A. Banaszuk,Physica D 197, 101 (2004)]。