Anantharam Vellareddy, Kaul Siddharth, Song Chunjuan, Kanthasamy Arthi, Kanthasamy Anumantha G
Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA.
Neurotoxicology. 2007 Sep;28(5):988-97. doi: 10.1016/j.neuro.2007.08.008. Epub 2007 Aug 25.
Oxidative stress is widely recognized as a key mediator of degenerative processes in Parkinson's disease (PD). Recently, we demonstrated that the dopaminergic toxin MPP+ initiates oxidative stress to cause caspase-3-dependent apoptotic cell death in mesencephalic dopaminergic neuronal (N27) cells. In this study, we determined the source of reactive oxygen species (ROS) produced during MPP+-induced apoptotic cell death. In addition to mitochondria, plasma membrane NADPH oxidase is considered a major producer of ROS inside the cell. Here, we show that N27 neuronal cells express key NADPH oxidase subunits gp91phox and p67phox. We used structurally diverse NADPH oxidase inhibitors, aminoethyl-benzenesulfonylfluoride (AEBSF, 100-1000microM), apocynin (100-1000microM), and diphenylene iodonium (DPI, 3-30microM), to inhibit intrinsic NADPH oxidase activity in N27 cells. Flow cytometric analysis using the ROS-sensitive dye hydroethidine revealed that AEBSF blocked 300microM MPP+-induced ROS production for over 45min in N27 cells, in a dose-dependent manner. Further treatment with DPI, apocynin, and SOD also blocked MPP+-induced ROS production. In Sytox cell death assays, co-treatment with AEBSF, apocynin, or DPI for 24h significantly suppressed MPP+-induced cytotoxic cell death. Similarly, co-treatment with these inhibitors also significantly attenuated MPP+-induced increases in caspase-3 enzymatic activity. Furthermore, quantitative DNA fragmentation ELISA assays revealed that AEBSF, DPI, and apocynin rescue N27 cells from MPP+-induced apoptotic cell death. Together, these results indicate for the first time that intracellular ROS generated by NAPDH oxidase are present within the mesencephalic neuronal cells, and are a key determinant of MPP+-mediated dopaminergic degeneration in in vitro models of dopaminergic degeneration. This study supports a critical role of NADPH oxidase in the oxidative damage in PD; targeting this enzyme may lead to novel therapies for PD.
氧化应激被广泛认为是帕金森病(PD)退行性病变过程的关键介质。最近,我们证明多巴胺能毒素MPP +引发氧化应激,导致中脑多巴胺能神经元(N27)细胞中依赖半胱天冬酶-3的凋亡性细胞死亡。在本研究中,我们确定了MPP +诱导的凋亡性细胞死亡过程中产生的活性氧(ROS)的来源。除了线粒体,质膜NADPH氧化酶被认为是细胞内ROS的主要产生者。在这里,我们表明N27神经元细胞表达关键的NADPH氧化酶亚基gp91phox和p67phox。我们使用结构多样的NADPH氧化酶抑制剂,氨乙基苯磺酰氟(AEBSF,100 - 1000μM)、Apocynin(100 - 1000μM)和二亚苯基碘鎓(DPI,3 - 30μM),来抑制N27细胞中的内源性NADPH氧化酶活性。使用对ROS敏感的染料氢化乙锭进行的流式细胞术分析表明,AEBSF以剂量依赖的方式在N27细胞中阻断300μM MPP +诱导的ROS产生超过45分钟。用DPI、Apocynin和超氧化物歧化酶(SOD)进一步处理也阻断了MPP +诱导的ROS产生。在Sytox细胞死亡测定中,与AEBSF、Apocynin或DPI共同处理24小时可显著抑制MPP +诱导的细胞毒性细胞死亡。同样,与这些抑制剂共同处理也显著减弱了MPP +诱导的半胱天冬酶-3酶活性的增加。此外,定量DNA片段化ELISA测定表明,AEBSF、DPI和Apocynin可使N27细胞从MPP +诱导的凋亡性细胞死亡中获救。总之,这些结果首次表明,由NAPDH氧化酶产生的细胞内ROS存在于中脑神经元细胞中,并且是多巴胺能变性体外模型中MPP +介导的多巴胺能变性的关键决定因素。本研究支持NADPH氧化酶在PD氧化损伤中的关键作用;靶向这种酶可能会带来治疗PD的新疗法。