Carlucci Giuseppe, D'Archivio Angelo Antonio, Maggi Maria Anna, Mazzeo Pietro, Ruggieri Fabrizio
Università degli Studi G. D'Annunzio di Chieti, Dipartimento di Scienze del Farmaco,Via dei Vestini, 66100 Chieti, Italy.
Anal Chim Acta. 2007 Oct 3;601(1):68-76. doi: 10.1016/j.aca.2007.08.026. Epub 2007 Aug 23.
In this paper, a quantitative structure-retention relationship (QSRR) method is employed to model the retention behaviour in reversed-phase high-performance liquid chromatography of arylpropionic acid derivatives, largely used non-steroidal anti-inflammatory drugs (NSAIDs). Computed molecular descriptors and the organic modifier content in the mobile phase are associated into a comprehensive model to describe the effect of both solute structure and eluent composition on the isocratic retention of these drugs in water-acetonitrile mobile phases. Multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is used to extract from a large set of computed 3D descriptors an optimal subset. Based on GA-MLR analysis, a five-dimensional QSRR model is identified. All the four selected molecular descriptors belong to the category of GEometry, Topology, and Atom-Weights AssemblY (GETAWAY) descriptors. The related multilinear model exhibits a quite good fitting and predictive performance. This model is further improved using an artificial neural network (ANN) learned by error back-propagation. Finally, the ANN-based model displays a remarkably better performance as compared with the MLR counterpart and, based on external validation, is able to predict with good accuracy the behaviour of unknown arylpropionic NSAIDs in the range of mobile phase composition of analytical interest (between 35 and 75% acetonitrile (v/v)).
在本文中,采用定量结构-保留关系(QSRR)方法对芳基丙酸衍生物在反相高效液相色谱中的保留行为进行建模,芳基丙酸衍生物是广泛使用的非甾体抗炎药(NSAIDs)。将计算得到的分子描述符与流动相中的有机改性剂含量关联到一个综合模型中,以描述溶质结构和洗脱液组成对这些药物在水-乙腈流动相中等度保留的影响。采用多线性回归(MLR)结合遗传算法(GA)变量选择,从大量计算得到的三维描述符中提取最优子集。基于GA-MLR分析,确定了一个五维QSRR模型。所选的四个分子描述符均属于几何、拓扑和原子权重组合(GETAWAY)描述符类别。相关的多线性模型表现出相当好的拟合和预测性能。使用误差反向传播学习的人工神经网络(ANN)对该模型进行了进一步改进。最后,基于外部验证,与MLR模型相比,基于ANN的模型表现出显著更好的性能,并且能够准确预测在分析感兴趣的流动相组成范围内(35%至75%乙腈(v/v))未知芳基丙酸NSAIDs的行为。