Gonik M M, Bobyrev A E, Burmenskiĭ V A, Kriksunov E A, Li B-L, Malchow H, Medvinskiĭ A B, Sterligova O P
Biofizika. 2007 Jul-Aug;52(4):760-8.
We present a mathematical model of the dynamics of a spatially heterogeneous predator-prey population system. A prototype of the model system is the Syamozero lake fish community. We study the impact of the invader, an intermediate predator, on the dynamics of the fish community. We show that the invasion can lead to the appearance of chaotic oscillations in the population density. We show also that different dynamical regimes resulting from the invasion, i.e., stationary, non-chaotic oscillatory and chaotic ones, can coexist. The "choice" of a specific regime therewith depends on the initial invader density. Our analysis of solutions of the mathematical models shows that the successful invasion of the alien species takes place solely in the absence of the competition between the invaders and the native species.
我们提出了一个空间异质捕食-被捕食种群系统动力学的数学模型。该模型系统的一个原型是西亚莫泽罗湖鱼类群落。我们研究了入侵物种,即中间捕食者,对鱼类群落动态的影响。我们表明,入侵会导致种群密度出现混沌振荡。我们还表明,入侵产生的不同动态模式,即稳定、非混沌振荡和混沌模式,可以共存。特定模式的“选择”因此取决于初始入侵物种密度。我们对数学模型解的分析表明,外来物种的成功入侵仅发生在入侵者与本地物种之间不存在竞争的情况下。