Palstra Friso P, O'Connell Michael F, Ruzzante Daniel E
Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada B3H 4J1.
Mol Ecol. 2007 Nov;16(21):4504-22. doi: 10.1111/j.1365-294X.2007.03541.x. Epub 2007 Oct 1.
Metapopulation dynamics are increasingly invoked in management and conservation of endangered species. In this context, asymmetrical gene flow patterns can be density dependent, with migration occurring mainly from larger into smaller populations, which may depend on it for their persistence. Using genetic markers, such patterns have recently been documented for various organisms including salmonids, suggesting this may be a more general pattern. However, metapopulation theory does not restrict gene flow asymmetry to 'source-sink' structures, nor need these patterns be constant over longer evolutionary timescales. In anadromous salmonids, gene flow can be expected to be shaped by various selective pressures underlying homing and dispersal ('straying') behaviours. The relative importance of these selective forces will vary spatially and for populations of different census size. Furthermore, the consequences of life-history variation among populations for dispersal and hence gene flow remain poorly quantified. We examine population structure and connectivity in Atlantic salmon (Salmo salar L.) from Newfoundland and Labrador, a region where populations of this species are relatively pristine. Using genetic variation at 13 microsatellite loci from samples (N=1346) collected from a total of 20 rivers, we examine connectivity at several regional and temporal scales and test the hypothesis that the predominant direction of gene flow is from large into small populations. We reject this hypothesis and find that the directionality of migration is affected by the temporal scale over which gene flow is assessed. Whereas large populations tend to function as sources of dispersal over contemporary timescales, such patterns are often changed and even reversed over evolutionary, coalescent-derived timescales. These patterns of population structure furthermore vary between different regions and are compatible with demographic and life-history attributes. We find no evidence for sex-biased dispersal underlying gene flow asymmetry. Our findings caution against generalizations concerning the directionality of gene flow in Atlantic salmon and emphasize the need for detailed regional study, if such information is to be meaningfully applied in conservation and management of salmonids.
集合种群动态在濒危物种的管理和保护中越来越受到重视。在这种情况下,不对称的基因流动模式可能是密度依赖性的,迁移主要发生在从较大种群到较小种群之间,较小种群的存续可能依赖于此。利用遗传标记,最近已记录到包括鲑科鱼类在内的各种生物存在这种模式,这表明这可能是一种更普遍的模式。然而,集合种群理论并不将基因流动不对称局限于“源 - 汇”结构,而且这些模式在更长的进化时间尺度上也不一定是恒定的。在溯河洄游的鲑科鱼类中,基因流动预计会受到归巢和扩散(“迷路”)行为背后各种选择压力的影响。这些选择力的相对重要性在空间上以及不同普查规模的种群中会有所不同。此外,种群间生活史变异对扩散进而对基因流动的影响仍未得到充分量化。我们研究了来自纽芬兰和拉布拉多的大西洋鲑(Salmo salar L.)的种群结构和连通性,该地区该物种的种群相对原始。利用从总共20条河流采集的样本(N = 1346)中13个微卫星位点的遗传变异,我们在几个区域和时间尺度上研究连通性,并检验基因流动的主要方向是从大种群到小种群这一假设。我们拒绝了这一假设,发现迁移的方向性受评估基因流动的时间尺度影响。在当代时间尺度上,大种群往往充当扩散源,但在进化的、基于溯祖的时间尺度上,这种模式常常会改变甚至逆转。此外,这些种群结构模式在不同区域之间也有所不同,并且与种群统计学和生活史特征相符。我们没有发现基因流动不对称背后存在性别偏向扩散的证据。我们的研究结果提醒人们不要对大西洋鲑基因流动的方向性进行一概而论,并强调如果要将此类信息有意义地应用于鲑科鱼类的保护和管理,就需要进行详细的区域研究。