Deng Alan Y
Research Centre, Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada.
Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R195-202. doi: 10.1093/hmg/ddm126.
Essential hypertension is a common disorder that leads to significant morbidity and mortality; however, the underlying mechanisms have remained elusive. Recent animal model studies have uncovered a complex genetic architecture of quantitative trait loci (QTLs) for blood pressure (BP), intricate QTL-QTL interactions and powerful genome regulations that underlie polygenic hypertension. BP, a quantitative trait manifesting as a continuous variation, seems to be controlled by individual 'monogenic' QTLs following Mendelian inheritance. Certain QTLs are functionally organized in epistatic modules that likely participate in pathways and cascades, whereas others belong to independent modules. This understanding provides insights into probable genetic mechanisms underlying essential hypertension. Translation of gene discovery to therapy will require an integrated approach that includes experimental validation of genes in animal models and in humans.
原发性高血压是一种常见疾病,可导致严重的发病率和死亡率;然而,其潜在机制仍不清楚。最近的动物模型研究揭示了血压(BP)数量性状基因座(QTL)的复杂遗传结构、复杂的QTL-QTL相互作用以及构成多基因高血压基础的强大基因组调控。血压是一种表现为连续变化的数量性状,似乎由遵循孟德尔遗传的单个“单基因”QTL控制。某些QTL在可能参与信号通路和级联反应的上位性模块中进行功能组织,而其他QTL则属于独立模块。这一认识为原发性高血压潜在的遗传机制提供了见解。将基因发现转化为治疗方法需要一种综合方法,包括在动物模型和人类中对基因进行实验验证。