Suppr超能文献

当外部信息不可用时,采用多基因方法检测基因-环境相互作用。

Polygenic approaches to detect gene-environment interactions when external information is unavailable.

机构信息

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.

出版信息

Brief Bioinform. 2019 Nov 27;20(6):2236-2252. doi: 10.1093/bib/bby086.

Abstract

The exploration of 'gene-environment interactions' (G × E) is important for disease prediction and prevention. The scientific community usually uses external information to construct a genetic risk score (GRS), and then tests the interaction between this GRS and an environmental factor (E). However, external genome-wide association studies (GWAS) are not always available, especially for non-Caucasian ethnicity. Although GRS is an analysis tool to detect G × E in GWAS, its performance remains unclear when there is no external information. Our 'adaptive combination of Bayes factors method' (ADABF) can aggregate G × E signals and test the significance of G × E by a polygenic test. We here explore a powerful polygenic approach for G × E when external information is unavailable, by comparing our ADABF with the GRS based on marginal effects of SNPs (GRS-M) and GRS based on SNP × E interactions (GRS-I). ADABF is the most powerful method in the absence of SNP main effects, whereas GRS-M is generally the best test when single-nucleotide polymorphisms main effects exist. GRS-I is the least powerful test due to its data-splitting strategy. Furthermore, we apply these methods to Taiwan Biobank data. ADABF and GRS-M identified gene × alcohol and gene × smoking interactions on blood pressure (BP). BP-increasing alleles elevate more BP in drinkers (smokers) than in nondrinkers (nonsmokers). This work provides guidance to choose a polygenic approach to detect G × E when external information is unavailable.

摘要

“基因-环境相互作用(G×E)”的探索对于疾病的预测和预防很重要。科学界通常使用外部信息来构建遗传风险评分(GRS),然后测试该 GRS 与环境因素(E)之间的相互作用。然而,并非总是可以获得外部全基因组关联研究(GWAS),尤其是对于非白种人种族。尽管 GRS 是检测 GWAS 中 G×E 的分析工具,但在没有外部信息时,其性能仍不清楚。我们的“贝叶斯因子自适应组合方法”(ADABF)可以聚合 G×E 信号,并通过多基因测试来检验 G×E 的显著性。在这里,我们通过将 ADABF 与基于 SNP 边际效应的 GRS(GRS-M)和基于 SNP×E 相互作用的 GRS(GRS-I)进行比较,探索了一种在没有外部信息时强大的 G×E 多基因方法。当不存在 SNP 主要效应时,ADABF 是最强大的方法,而当存在单核苷酸多态性主要效应时,GRS-M 通常是最佳测试。由于其数据分割策略,GRS-I 是最不强大的测试。此外,我们将这些方法应用于台湾生物银行数据。ADABF 和 GRS-M 确定了血压(BP)上的基因×酒精和基因×吸烟相互作用。增加 BP 的等位基因使饮酒者(吸烟者)的 BP 升高幅度大于不饮酒者(不吸烟者)。这项工作为在没有外部信息时选择多基因方法来检测 G×E 提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a20/6954453/21de8f93a301/bby086f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验