Suppr超能文献

用于心脏手术中多变量数据分析和预后建模的贝叶斯网络。

Bayesian networks for multivariate data analysis and prognostic modelling in cardiac surgery.

作者信息

Peek Niels, Verduijn Marion, Rosseel Peter M J, de Jonge Evert, de Mol Bas A

机构信息

Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands.

出版信息

Stud Health Technol Inform. 2007;129(Pt 1):596-600.

Abstract

Prognostic models are tools to predict the outcome of disease and disease treatment. These models are traditionally built with supervised machine learning techniques, and consider prognosis as a static, one-shot activity. This paper presents a new type of prognostic model that builds on the Bayesian network methodology that implements a dynamic, process-oriented view on prognosis. In contrast to traditional prognostic models, prognostic Bayesian networks explicate the scenarios that lead to disease outcomes, and can be used to update predictions when new information becomes available. A recursive data analysis strategy for inducing prognostic Bayesian networks from medical data is presented, and applied to data from the field of cardiac surgery. The resulting model outperformed a model that was constructed with off-the-shelf Bayesian network learning software, and had similar performance as class probability trees.

摘要

预后模型是预测疾病及疾病治疗结果的工具。传统上,这些模型是使用监督式机器学习技术构建的,并将预后视为一种静态的一次性活动。本文提出了一种新型的预后模型,该模型基于贝叶斯网络方法构建,对预后采用动态的、面向过程的观点。与传统预后模型不同,预后贝叶斯网络阐明了导致疾病结果的各种情况,并且在有新信息可用时可用于更新预测。本文提出了一种从医学数据中诱导预后贝叶斯网络的递归数据分析策略,并将其应用于心脏外科领域的数据。所得模型的性能优于使用现成的贝叶斯网络学习软件构建的模型,并且与类别概率树的性能相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验