Suppr超能文献

贝叶斯技术在短期负荷预测神经网络中控制模型复杂度和选择输入的评估。

An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.

机构信息

Universidade Federal de Juiz de Fora, Brazil.

出版信息

Neural Netw. 2010 Apr;23(3):386-95. doi: 10.1016/j.neunet.2009.11.016. Epub 2009 Dec 2.

Abstract

Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation.

摘要

人工神经网络因其能够对大型多元数据集进行非线性建模而经常被提议用于电力负荷预测。 然而,使用神经网络进行建模并非易事;主要挑战有两个,一个是定义适当的模型复杂度水平,另一个是选择输入变量。 本文评估了在贝叶斯框架内自动进行神经网络建模的技术,应用于包含四个不同国家的每日负荷和天气数据的六个样本。 我们分析了贝叶斯“自动相关性确定”进行的输入选择,以及贝叶斯“证据”在选择最佳结构(以神经元数量为单位)方面的有用性,与基于交叉验证的方法相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验