Wu Winston H, Bui Alex A T, Batalin Maxim A, Liu Duo, Kaiser William J
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA.
IEEE Trans Inf Technol Biomed. 2007 Sep;11(5):553-62. doi: 10.1109/titb.2007.897579.
This paper presents an incremental diagnosis method (IDM) to detect a medical condition with the minimum wearable sensor usage by dynamically adjusting the sensor set based on the patient's state in his/her natural environment. The IDM, comprised of a naive Bayes classifier generated by supervised training with Gaussian clustering, is developed to classify patient motion in-context (due to a medical condition) and in real-time using a wearable sensor system. The IDM also incorporates a utility function, which is a simple form of expert knowledge and user preferences in sensor selection. Upon initial in-context detection, the utility function decides which sensor is to be activated next. High-resolution in-context detection with minimum sensor usage is possible because the necessary sensor can be activated or requested at the appropriate time. As a case study, the IDM is demonstrated in detecting different severity levels of a limp with minimum usage of high diagnostic resolution sensors.
本文提出了一种增量诊断方法(IDM),通过在患者自然环境中根据其状态动态调整传感器集,以最少的可穿戴传感器使用量来检测医疗状况。IDM由通过高斯聚类监督训练生成的朴素贝叶斯分类器组成,旨在使用可穿戴传感器系统对患者在特定情境下(由于医疗状况)的运动进行实时分类。IDM还包含一个效用函数,这是传感器选择中专家知识和用户偏好的一种简单形式。在初始的情境检测之后,效用函数决定接下来要激活哪个传感器。由于可以在适当的时候激活或请求必要的传感器,因此可以以最少的传感器使用量进行高分辨率的情境检测。作为一个案例研究,展示了IDM在以最少使用高诊断分辨率传感器的情况下检测不同严重程度跛行的应用。