Cole Bryan T, Roy Serge H, Nawab S Hamid
Dept of Electrical and Computer Engineering,Boston University, Boston, MA 02215, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5649-52. doi: 10.1109/IEMBS.2011.6091367.
We present a dynamic neural network (DNN) solution for detecting instances of freezing-of-gait (FoG) in Parkinson's disease (PD) patients while they perform unconstrained and unscripted activities. The input features to the DNN are derived from the outputs of three triaxial accelerometer (ACC) sensors and one surface electromyographic (EMG) sensor worn by the PD patient. The ACC sensors are placed on the shin and thigh of one leg and on one of the forearms while the EMG sensor is placed on the shin. Our FoG solution is architecturally distinct from the DNN solutions we have previously designed for detecting dyskinesia or tremor. However, all our DNN solutions utilize the same set of input features from each EMG or ACC sensor worn by the patient. When tested on experimental data from PD patients performing unconstrained and unscripted activities, our FoG detector exhibited 83% sensitivity and 97% specificity on a per-second basis.
我们提出了一种动态神经网络(DNN)解决方案,用于在帕金森病(PD)患者进行无约束、无脚本活动时检测步态冻结(FoG)实例。DNN的输入特征来自PD患者佩戴的三个三轴加速度计(ACC)传感器和一个表面肌电图(EMG)传感器的输出。ACC传感器放置在一条腿的小腿和大腿上以及一只前臂上,而EMG传感器放置在小腿上。我们的FoG解决方案在架构上与我们之前设计的用于检测运动障碍或震颤的DNN解决方案不同。然而,我们所有的DNN解决方案都利用患者佩戴的每个EMG或ACC传感器的同一组输入特征。在对PD患者进行无约束、无脚本活动的实验数据进行测试时,我们的FoG检测器每秒的灵敏度为83%,特异性为97%。