Suppr超能文献

养分胁迫与机械胁迫对植物形态的交互作用。

Interactive effects of nutrient and mechanical stresses on plant morphology.

作者信息

Puijalon Sara, Lena Jean-Paul, Bornette Gudrun

机构信息

UMR CNRS 5023, Ecology of fluvial hydrosystems, Université Lyon 1, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France.

出版信息

Ann Bot. 2007 Dec;100(6):1297-305. doi: 10.1093/aob/mcm226. Epub 2007 Oct 3.

Abstract

BACKGROUND AND AIMS

Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels.

METHODS

An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured.

KEY RESULTS

Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered.

CONCLUSIONS

These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species.

摘要

背景与目的

在自然条件下,植物物种经常会遭遇多种胁迫,而它们应对这些胁迫的方式是决定其生态幅的主要因素。机械胁迫(如风力、水流)和资源胁迫同时作用于植物形态特征的方式,即便这两种胁迫常常相互作用,却一直未得到充分研究。本文旨在评估在不同养分水平下,水力胁迫对植物形态的影响方式是否相同。

方法

对一种水生植物在沿养分梯度分布的四个生境中的四个水力胁迫(流速)梯度下生长时的形态变化进行了研究。测量了涵盖植物大小、干物质分配、器官含水量和叶片结构的形态特征。

主要结果

在所有形态特征方面均观察到流速和养分水平之间存在显著的交互作用。特别是,在低养分条件下,流速增加导致植物大小减小,这表明植物对水流胁迫有适应性反应(逃避策略)。另一方面,在高养分条件下,流速适度增加导致植物大小增加,这可能与植物表面水分更新引起的对更高养分供应的必然生长反应有关。对于某些特征(如干物质分配),随着流速增加观察到了一致的变化趋势,但与养分贫瘠条件相比,在养分丰富条件下,变化量要么减少,要么根据所考虑的特征而增大。

结论

这些结果表明,对于给定的物种,一个胁迫因素可能会因另一个胁迫因素而导致截然不同的模式,进而产生不同的策略。这些结果强调了研究植物对多种胁迫的反应对于理解物种实际生态幅的重要性。

相似文献

1
Interactive effects of nutrient and mechanical stresses on plant morphology.
Ann Bot. 2007 Dec;100(6):1297-305. doi: 10.1093/aob/mcm226. Epub 2007 Oct 3.
2
Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture.
PLoS One. 2012;7(7):e41502. doi: 10.1371/journal.pone.0041502. Epub 2012 Jul 24.
3
Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species.
Oecologia. 2013 Oct;173(2):363-74. doi: 10.1007/s00442-013-2639-2. Epub 2013 May 1.
4
Nutrient enrichment affects the mechanical resistance of aquatic plants.
J Exp Bot. 2012 Oct;63(17):6115-23. doi: 10.1093/jxb/ers268. Epub 2012 Oct 1.
7
Clonal plasticity of aquatic plant species submitted to mechanical stress: escape versus resistance strategy.
Ann Bot. 2008 Dec;102(6):989-96. doi: 10.1093/aob/mcn190. Epub 2008 Oct 14.
8
Approaches in the determination of plant nutrient uptake and distribution in space flight conditions.
Adv Space Res. 2000;26(2):299-302. doi: 10.1016/s0273-1177(99)00574-8.
10
The growth responses of coastal dune species are determined by nutrient limitation and sand burial.
Oecologia. 2008 May;156(1):169-78. doi: 10.1007/s00442-008-0968-3. Epub 2008 Feb 2.

引用本文的文献

本文引用的文献

1
Morphological variation of two taxonomically distant plant species along a natural flow velocity gradient.
New Phytol. 2004 Sep;163(3):651-660. doi: 10.1111/j.1469-8137.2004.01135.x.
2
Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects?
New Phytol. 2003 Feb;157(2):281-290. doi: 10.1046/j.1469-8137.2003.00666.x.
3
WATER MOTION, MARINE MACROALGAL PHYSIOLOGY, AND PRODUCTION.
J Phycol. 2000 Jun;36(3):453-472. doi: 10.1046/j.1529-8817.2000.99139.x. Epub 2001 Dec 25.
4
8
Interpreting phenotypic variation in plants.
Trends Ecol Evol. 1994 May;9(5):187-91. doi: 10.1016/0169-5347(94)90087-6.
9
10
Phenotypic plasticity for plant development, function and life history.
Trends Plant Sci. 2000 Dec;5(12):537-42. doi: 10.1016/s1360-1385(00)01797-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验