Suppr超能文献

伴侣蛋白通过短暂暴露末端蛋白结构域中有助于εRNA结合的C近端区域来激活嗜肝DNA病毒逆转录酶。

Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to epsilon RNA binding.

作者信息

Stahl Michael, Beck Jürgen, Nassal Michael

机构信息

University Hospital Freiburg, Internal Med. II/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.

出版信息

J Virol. 2007 Dec;81(24):13354-64. doi: 10.1128/JVI.01196-07. Epub 2007 Oct 3.

Abstract

All hepatitis B viruses replicate by protein-primed reverse transcription, employing a specialized reverse transcriptase, P protein, that carries a unique terminal protein (TP) domain. To initiate reverse transcription, P protein must bind to a stem-loop, epsilon, on the pregenomic RNA template. TP then provides a Y residue for covalent attachment of the first nucleotide of an epsilon-templated DNA oligonucleotide (priming reaction) that serves to initiate full-length minus-strand DNA synthesis. epsilon binding requires the chaperone-dependent conversion of inactive P protein into an activated, metastable form designated P*. However, how P* differs structurally from P protein is not known. Here we used an in vitro reconstitution system for active duck hepatitis B virus P combined with limited proteolysis, site-specific antibodies, and defined P mutants to structurally compare nonactivated versus chaperone-activated versus primed P protein. The data show that Hsp70 action, under conditions identical to those required for functional activation, transiently exposes the C proximal TP region which is, probably directly, involved in epsilon RNA binding. Notably, after priming and epsilon RNA removal, a very similar new conformation appears stable without further chaperone activity; hence, the activation of P protein is triggered by energy-consuming chaperone action but may be completed by template RNA binding.

摘要

所有乙肝病毒通过蛋白质引发的逆转录进行复制,利用一种特殊的逆转录酶——P蛋白,该蛋白带有一个独特的末端蛋白(TP)结构域。为启动逆转录,P蛋白必须与前基因组RNA模板上的一个茎环结构(ε)结合。然后TP为以ε为模板的DNA寡核苷酸的第一个核苷酸的共价连接提供一个Y残基(引发反应),该寡核苷酸用于启动全长负链DNA合成。ε结合需要伴侣蛋白依赖的无活性P蛋白转化为一种活化的、亚稳态形式,称为P*。然而,P*在结构上与P蛋白有何不同尚不清楚。在这里,我们使用了一种用于活性鸭乙肝病毒P蛋白的体外重组系统,结合有限蛋白酶解、位点特异性抗体和特定的P突变体,对未活化的、伴侣蛋白活化的和引发后的P蛋白进行结构比较。数据表明,在与功能活化所需条件相同的情况下,Hsp70的作用会短暂暴露靠近C端的TP区域,该区域可能直接参与ε RNA的结合。值得注意的是,在引发和去除ε RNA后,一种非常相似的新构象在没有进一步伴侣蛋白活性的情况下似乎是稳定的;因此,P蛋白的活化由耗能的伴侣蛋白作用触发,但可能由模板RNA结合完成。

相似文献

3
Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase.
J Virol. 2003 Apr;77(8):4471-80. doi: 10.1128/jvi.77.8.4471-4480.2003.
8
An interdomain RNA binding site on the hepadnaviral polymerase that is essential for reverse transcription.
Virology. 2009 Jul 20;390(1):130-8. doi: 10.1016/j.virol.2009.04.023. Epub 2009 May 24.
10
The duck hepatitis B virus polymerase is activated by its RNA packaging signal, epsilon.
J Virol. 1998 Jul;72(7):5789-96. doi: 10.1128/JVI.72.7.5789-5796.1998.

引用本文的文献

2
Hepatitis B Virus Nucleocapsid Assembly.
J Mol Biol. 2025 Apr 30:169182. doi: 10.1016/j.jmb.2025.169182.
5
Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role?
J Virol. 2022 May 11;96(9):e0005122. doi: 10.1128/jvi.00051-22. Epub 2022 Apr 12.
6
Relaxing the restricted structural dynamics in the human hepatitis B virus RNA encapsidation signal enables replication initiation in vitro.
PLoS Pathog. 2022 Mar 8;18(3):e1010362. doi: 10.1371/journal.ppat.1010362. eCollection 2022 Mar.
7
Pathogenicity and virulence of Hepatitis B virus.
Virulence. 2022 Dec;13(1):258-296. doi: 10.1080/21505594.2022.2028483.
9
Establishment of a system for finding inhibitors of ε RNA binding with the HBV polymerase.
Genes Cells. 2020 Aug;25(8):523-537. doi: 10.1111/gtc.12778. Epub 2020 Jun 8.
10
Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay.
Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3):a034090. doi: 10.1101/cshperspect.a034090.

本文引用的文献

2
Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals.
Nucleic Acids Res. 2007;35(8):2800-11. doi: 10.1093/nar/gkm131. Epub 2007 Apr 11.
3
Hepatitis B virus replication.
World J Gastroenterol. 2007 Jan 7;13(1):48-64. doi: 10.3748/wjg.v13.i1.48.
4
Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal.
Nucleic Acids Res. 2006;34(16):4449-57. doi: 10.1093/nar/gkl582. Epub 2006 Aug 31.
5
Visualizing polynucleotide polymerase machines at work.
EMBO J. 2006 Aug 9;25(15):3458-68. doi: 10.1038/sj.emboj.7601211.
7
Identification of an essential molecular contact point on the duck hepatitis B virus reverse transcriptase.
J Virol. 2005 Aug;79(16):10164-70. doi: 10.1128/JVI.79.16.10164-10170.2005.
8
Hsp70 chaperones: cellular functions and molecular mechanism.
Cell Mol Life Sci. 2005 Mar;62(6):670-84. doi: 10.1007/s00018-004-4464-6.
9
Duck hepatitis B virus: an invaluable model system for HBV infection.
Adv Virus Res. 2004;63:1-70. doi: 10.1016/S0065-3527(04)63001-6.
10
Pathways of chaperone-mediated protein folding in the cytosol.
Nat Rev Mol Cell Biol. 2004 Oct;5(10):781-91. doi: 10.1038/nrm1492.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验