Suppr超能文献

病毒感染中的蛋白稳态:揭示复杂的病毒-伴侣蛋白相互作用。

Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay.

机构信息

Department of Biology, Stanford University, Stanford, California 94305.

Department of Genetics, Stanford University, Stanford, California 94305.

出版信息

Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3):a034090. doi: 10.1101/cshperspect.a034090.

Abstract

Viruses are obligate intracellular parasites that rely on their hosts for protein synthesis, genome replication, and viral particle production. As such, they have evolved mechanisms to divert host resources, including molecular chaperones, facilitate folding and assembly of viral proteins, stabilize complex structures under constant mutational pressure, and modulate signaling pathways to dampen antiviral responses and prevent premature host death. Biogenesis of viral proteins often presents unique challenges to the proteostasis network, as it requires the rapid and orchestrated production of high levels of a limited number of multifunctional, multidomain, and aggregation-prone proteins. To overcome such challenges, viruses interact with the folding machinery not only as clients but also as regulators of chaperone expression, function, and subcellular localization. In this review, we summarize the main types of interactions between viral proteins and chaperones during infection, examine evolutionary aspects of this relationship, and discuss the potential of using chaperone inhibitors as broad-spectrum antivirals.

摘要

病毒是专性细胞内寄生虫,依赖宿主进行蛋白质合成、基因组复制和病毒颗粒生产。因此,它们进化出了多种机制来转移宿主资源,包括分子伴侣,促进病毒蛋白的折叠和组装,在持续的突变压力下稳定复杂结构,并调节信号通路以抑制抗病毒反应并防止宿主过早死亡。病毒蛋白的生物发生常常给蛋白质稳态网络带来独特的挑战,因为它需要快速协调地产生大量数量有限的多功能、多域和易聚集的蛋白质。为了克服这些挑战,病毒不仅作为客户与折叠机制相互作用,还作为伴侣蛋白表达、功能和亚细胞定位的调节剂。在这篇综述中,我们总结了感染过程中病毒蛋白与伴侣之间的主要相互作用类型,考察了这种关系的进化方面,并讨论了使用伴侣蛋白抑制剂作为广谱抗病毒药物的潜力。

相似文献

1
Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay.
Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3):a034090. doi: 10.1101/cshperspect.a034090.
2
Chaperoning the : Current Knowledge and Future Directions.
Viruses. 2018 Dec 8;10(12):699. doi: 10.3390/v10120699.
3
The Hsp70-Hsp90 Chaperone Cascade in Protein Folding.
Trends Cell Biol. 2019 Feb;29(2):164-177. doi: 10.1016/j.tcb.2018.10.004. Epub 2018 Nov 28.
4
Broad action of Hsp90 as a host chaperone required for viral replication.
Biochim Biophys Acta. 2012 Mar;1823(3):698-706. doi: 10.1016/j.bbamcr.2011.11.007. Epub 2011 Dec 2.
5
Heat Shock Protein 90 Ensures the Integrity of Rubella Virus p150 Protein and Supports Viral Replication.
J Virol. 2019 Oct 29;93(22). doi: 10.1128/JVI.01142-19. Print 2019 Nov 15.
9
Hsp90 Chaperones Bluetongue Virus Proteins and Prevents Proteasomal Degradation.
J Virol. 2019 Sep 30;93(20). doi: 10.1128/JVI.00898-19. Print 2019 Oct 15.
10
Chaperone machines for protein folding, unfolding and disaggregation.
Nat Rev Mol Cell Biol. 2013 Oct;14(10):630-42. doi: 10.1038/nrm3658. Epub 2013 Sep 12.

引用本文的文献

1
SARS-CoV-2 remodels the Golgi apparatus to facilitate viral assembly and secretion.
PLoS Pathog. 2025 Jun 20;21(6):e1013295. doi: 10.1371/journal.ppat.1013295. eCollection 2025 Jun.
2
Heat shock protein 90 chaperone activity is required for hepatitis A virus replication.
J Virol. 2025 Jul 22;99(7):e0050225. doi: 10.1128/jvi.00502-25. Epub 2025 Jun 5.
3
Underestimated virus impaired cognition-more evidence and more work to do.
Front Immunol. 2025 May 12;16:1550179. doi: 10.3389/fimmu.2025.1550179. eCollection 2025.
4
Glucose-regulated protein 94 (Grp94/gp96) in viral pathogenesis: Insights into its role and therapeutic potentials.
Eur J Med Chem. 2025 Aug 5;292:117713. doi: 10.1016/j.ejmech.2025.117713. Epub 2025 Apr 30.
5
Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria.
Genome Biol Evol. 2025 Feb 3;17(2). doi: 10.1093/gbe/evaf010.
6
BiP/GRP78 is a pro-viral factor for diverse dsDNA viruses that promotes the survival and proliferation of cells upon KSHV infection.
PLoS Pathog. 2024 Oct 29;20(10):e1012660. doi: 10.1371/journal.ppat.1012660. eCollection 2024 Oct.
7
9
Tracing genetic diversity captures the molecular basis of misfolding disease.
Nat Commun. 2024 Apr 18;15(1):3333. doi: 10.1038/s41467-024-47520-0.
10
SARS-CoV-2 Nsp1 cooperates with initiation factors EIF1 and 1A to selectively enhance translation of viral RNA.
PLoS Pathog. 2024 Feb 9;20(2):e1011535. doi: 10.1371/journal.ppat.1011535. eCollection 2024 Feb.

本文引用的文献

1
Destabilized adaptive influenza variants critical for innate immune system escape are potentiated by host chaperones.
PLoS Biol. 2018 Sep 17;16(9):e3000008. doi: 10.1371/journal.pbio.3000008. eCollection 2018 Sep.
2
HSP70 Copurifies with Zika Virus Particles.
Virology. 2018 Sep;522:228-233. doi: 10.1016/j.virol.2018.07.009. Epub 2018 Jul 25.
3
Translational Control in Virus-Infected Cells.
Cold Spring Harb Perspect Biol. 2019 Mar 1;11(3):a033001. doi: 10.1101/cshperspect.a033001.
8
The TRiC chaperonin controls reovirus replication through outer-capsid folding.
Nat Microbiol. 2018 Apr;3(4):481-493. doi: 10.1038/s41564-018-0122-x. Epub 2018 Mar 12.
10
Host proteostasis modulates influenza evolution.
Elife. 2017 Sep 26;6:e28652. doi: 10.7554/eLife.28652.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验