Jones Stephanie R, Pritchett Dominique L, Stufflebeam Steven M, Hämäläinen Matti, Moore Christopher I
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
J Neurosci. 2007 Oct 3;27(40):10751-64. doi: 10.1523/JNEUROSCI.0482-07.2007.
Previous reports conflict as to the role of primary somatosensory neocortex (SI) in tactile detection. We addressed this question in normal human subjects using whole-head magnetoencephalography (MEG) recording. We found that the evoked signal (0-175 ms) showed a prominent equivalent current dipole that localized to the anterior bank of the postcentral gyrus, area 3b of SI. The magnitude and timing of peaks in the SI waveform were stimulus amplitude dependent and predicted perception beginning at approximately 70 ms after stimulus. To make a direct and principled connection between the SI waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. The SI evoked response was successfully reproduced from the intracellular currents in pyramidal neurons driven by a sequence of lamina-specific excitatory input, consisting of output from the granular layer (approximately 25 ms), exogenous input to the supragranular layers (approximately 70 ms), and a second wave of granular output (approximately 135 ms). The model also predicted that SI correlates of perception reflect stronger and shorter-latency supragranular and late granular drive during perceived trials. These findings strongly support the view that signatures of tactile detection are present in human SI and are mediated by local neural dynamics induced by lamina-specific synaptic drive. Furthermore, our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception.
关于初级体感新皮层(SI)在触觉检测中的作用,以往的报告存在矛盾之处。我们使用全脑磁脑电图(MEG)记录在正常人类受试者中解决了这个问题。我们发现诱发信号(0 - 175毫秒)显示出一个突出的等效电流偶极子,其定位于中央后回的前缘,即SI的3b区。SI波形中峰值的大小和时间取决于刺激幅度,并在刺激后约70毫秒开始预测感知。为了在SI波形与潜在神经动力学之间建立直接且合理的联系,我们开发了一个具有生物物理真实性的计算SI模型,该模型在颗粒上层和颗粒下层包含兴奋性和抑制性神经元。通过由颗粒层输出(约25毫秒)、颗粒上层的外源输入(约70毫秒)和颗粒层输出的第二波(约135毫秒)组成的一系列层特异性兴奋性输入驱动的锥体神经元的细胞内电流,成功再现了SI诱发反应。该模型还预测,在感知试验期间,感知的SI相关性反映了颗粒上层和晚期颗粒驱动更强且潜伏期更短。这些发现有力地支持了这样一种观点,即触觉检测的特征存在于人类SI中,并由层特异性突触驱动诱导的局部神经动力学介导。此外,我们的模型为MEG信号提供了一个具有生物物理真实性的解决方案,并可以预测人类感知的电生理相关性。