Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America.
Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France.
PLoS Comput Biol. 2024 Feb 26;20(2):e1011108. doi: 10.1371/journal.pcbi.1011108. eCollection 2024 Feb.
Biophysically detailed neural models are a powerful technique to study neural dynamics in health and disease with a growing number of established and openly available models. A major challenge in the use of such models is that parameter inference is an inherently difficult and unsolved problem. Identifying unique parameter distributions that can account for observed neural dynamics, and differences across experimental conditions, is essential to their meaningful use. Recently, simulation based inference (SBI) has been proposed as an approach to perform Bayesian inference to estimate parameters in detailed neural models. SBI overcomes the challenge of not having access to a likelihood function, which has severely limited inference methods in such models, by leveraging advances in deep learning to perform density estimation. While the substantial methodological advancements offered by SBI are promising, their use in large scale biophysically detailed models is challenging and methods for doing so have not been established, particularly when inferring parameters that can account for time series waveforms. We provide guidelines and considerations on how SBI can be applied to estimate time series waveforms in biophysically detailed neural models starting with a simplified example and extending to specific applications to common MEG/EEG waveforms using the the large scale neural modeling framework of the Human Neocortical Neurosolver. Specifically, we describe how to estimate and compare results from example oscillatory and event related potential simulations. We also describe how diagnostics can be used to assess the quality and uniqueness of the posterior estimates. The methods described provide a principled foundation to guide future applications of SBI in a wide variety of applications that use detailed models to study neural dynamics.
生理精确的神经模型是研究健康和疾病状态下神经动力学的强大工具,越来越多的成熟且公开可用的模型正在被建立。在使用这些模型时,主要面临的挑战是参数推断是一个固有的困难和未解决的问题。确定可以解释观察到的神经动力学和不同实验条件差异的独特参数分布,对于它们的合理使用至关重要。最近,基于模拟的推断 (SBI) 已被提议作为一种方法来执行贝叶斯推断,以估计详细神经模型中的参数。SBI 通过利用深度学习的进展来进行密度估计,克服了无法访问似然函数的挑战,该挑战严重限制了此类模型中的推断方法。虽然 SBI 提供的实质性方法进展很有希望,但在大规模生理精确模型中使用 SBI 具有挑战性,并且尚未建立这样做的方法,特别是在推断可以解释时间序列波形的参数时。我们提供了关于如何将 SBI 应用于从简化示例开始估计生理精确神经模型中的时间序列波形的指南和注意事项,并扩展到使用人类新皮质神经求解器的大规模神经建模框架对常见 MEG/EEG 波形的特定应用。具体来说,我们描述了如何估计和比较示例振荡和事件相关电位模拟的结果。我们还描述了如何使用诊断工具来评估后验估计的质量和独特性。所描述的方法为 SBI 在使用详细模型研究神经动力学的各种应用中的未来应用提供了一个有原则的基础。