Suppr超能文献

NMDA受体对成年小鼠浦肯野细胞攀缘纤维反应的作用。

NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell.

作者信息

Piochon Claire, Irinopoulou Theano, Brusciano Daniel, Bailly Yannick, Mariani Jean, Levenes Carole

机构信息

Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, Centre National de la Recherche Scientifique, Laboratoire Neurobiologie des Processus Adaptifs, Equipe Développement et Vieillissement du Système Nerveux, 75005 Paris, France.

出版信息

J Neurosci. 2007 Oct 3;27(40):10797-809. doi: 10.1523/JNEUROSCI.2422-07.2007.

Abstract

Among integrative neurons displaying long-term synaptic plasticity, adult Purkinje cells seemed to be an exception by lacking functional NMDA receptors (NMDA-Rs). Although numerous anatomical studies have shown both NR1 and NR2 NMDA-R subunits in adult Purkinje cells, patch-clamp studies failed to detect any NMDA currents. Using more recent pharmacological and immunodetection tools, we demonstrate here that Purkinje cells from adult mice respond to exogenous NMDA application and that postsynaptic NMDA-Rs carry part of the climbing fiber-mediated EPSC (CF-EPSC), with undetectable contribution from presynaptic or polysynaptic NMDA currents. We also detect NR2-A/B subunits in adult Purkinje cells by immunohistochemistry. The NMDA-mediated CF-EPSC is barely detectable before 3 weeks postnatal. From the end of the third week, the number of cells displaying the NMDA-mediated CF-EPSC rapidly increases. Soon, this EPSC becomes detectable in all the Purkinje cells but is still very small. Its amplitude continues to increase until 12 weeks after birth. In mature Purkinje cells, we show that the NMDA-Rs contribute to the depolarizing plateau of complex spikes and increase their number of spikelets. Together, these observations demonstrate that mature Purkinje cells express functional NMDA receptors that become detectable in CF-EPSCs at approximately 21 d after birth and control the complex spike waveform.

摘要

在表现出长期突触可塑性的整合神经元中,成年浦肯野细胞似乎是个例外,因为它们缺乏功能性N-甲基-D-天冬氨酸受体(NMDA-Rs)。尽管众多解剖学研究已在成年浦肯野细胞中发现了NR1和NR2 NMDA-R亚基,但膜片钳研究未能检测到任何NMDA电流。利用更新的药理学和免疫检测工具,我们在此证明,成年小鼠的浦肯野细胞对外源性NMDA的应用有反应,并且突触后NMDA-Rs介导了部分攀爬纤维介导的兴奋性突触后电流(CF-EPSC),而突触前或多突触NMDA电流的贡献无法检测到。我们还通过免疫组织化学在成年浦肯野细胞中检测到了NR2-A/B亚基。NMDA介导的CF-EPSC在出生后3周之前几乎检测不到。从第三周结束时起,显示NMDA介导的CF-EPSC的细胞数量迅速增加。很快,这种EPSC在所有浦肯野细胞中都可检测到,但仍然非常小。其幅度持续增加,直到出生后12周。在成熟的浦肯野细胞中,我们表明NMDA-Rs有助于复合动作电位的去极化平台期并增加其棘波数量。总之,这些观察结果表明,成熟的浦肯野细胞表达功能性NMDA受体,这些受体在出生后约21天时在CF-EPSCs中变得可检测到,并控制复合动作电位波形。

相似文献

1
NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell.
J Neurosci. 2007 Oct 3;27(40):10797-809. doi: 10.1523/JNEUROSCI.2422-07.2007.
2
Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells.
Eur J Neurosci. 2003 Feb;17(4):887-91. doi: 10.1046/j.1460-9568.2003.02498.x.
3
Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.
J Neurophysiol. 2013 Mar;109(5):1333-42. doi: 10.1152/jn.00350.2012. Epub 2012 Dec 5.
4
Long-lasting NMDA receptor-mediated EPSCs in mouse striatal medium spiny neurons.
J Neurophysiol. 2007 Nov;98(5):2693-704. doi: 10.1152/jn.00462.2007. Epub 2007 Sep 5.
5
Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum.
J Physiol. 1998 Jan 15;506 ( Pt 2)(Pt 2):391-405. doi: 10.1111/j.1469-7793.1998.391bw.x.
7
Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil.
J Physiol. 1996 Dec 1;497 ( Pt 2)(Pt 2):437-55. doi: 10.1113/jphysiol.1996.sp021779.
8
Modulation of glutamatergic transmission by bergmann glial cells in rat cerebellum in situ.
J Neurophysiol. 2003 Feb;89(2):979-88. doi: 10.1152/jn.00904.2002.
9
Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum.
J Neurosci. 2010 Nov 10;30(45):15330-5. doi: 10.1523/JNEUROSCI.4344-10.2010.
10
Electrophysiological characteristics of cells in the anterior caudal lobe of the mormyrid cerebellum.
Neuroscience. 2010 Nov 24;171(1):79-91. doi: 10.1016/j.neuroscience.2010.08.033. Epub 2010 Aug 21.

引用本文的文献

1
Associative plasticity of granule cell inputs to cerebellar Purkinje cells.
Elife. 2024 Dec 11;13:RP96140. doi: 10.7554/eLife.96140.
2
Branch-specific clustered parallel fiber input controls dendritic computation in Purkinje cells.
iScience. 2024 Aug 20;27(9):110756. doi: 10.1016/j.isci.2024.110756. eCollection 2024 Sep 20.
5
Mapping proteomic composition of excitatory postsynaptic sites in the cerebellar cortex.
Front Mol Neurosci. 2024 May 9;17:1381534. doi: 10.3389/fnmol.2024.1381534. eCollection 2024.
6
Asymmetric Voltage Attenuation in Dendrites Can Enable Hierarchical Heterosynaptic Plasticity.
eNeuro. 2023 Jul 17;10(7). doi: 10.1523/ENEURO.0014-23.2023. Print 2023 Jul.
7
Diverse role of NMDA receptors for dendritic integration of neural dynamics.
PLoS Comput Biol. 2023 Apr 10;19(4):e1011019. doi: 10.1371/journal.pcbi.1011019. eCollection 2023 Apr.
8
Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal phencyclidine model of schizophrenia.
Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2122544119. doi: 10.1073/pnas.2122544119. Epub 2022 May 19.
9
The calcium sensor, rather than the route of calcium entry, defines cerebellar plasticity pathways.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2119598119.
10
α2δ-2 is required for depolarization-induced suppression of excitation in Purkinje cells.
J Physiol. 2022 Jan;600(1):111-122. doi: 10.1113/JP282438. Epub 2021 Dec 3.

本文引用的文献

2
Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat.
J Physiol. 2006 Feb 15;571(Pt 1):101-20. doi: 10.1113/jphysiol.2005.102764. Epub 2005 Dec 15.
3
Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum.
Neurosci Res. 2005 Nov;53(3):221-8. doi: 10.1016/j.neures.2005.07.007. Epub 2005 Sep 1.
4
An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal.
J Neurophysiol. 2005 Dec;94(6):4281-9. doi: 10.1152/jn.00661.2005. Epub 2005 Aug 24.
6
Physiological and morphological development of the rat cerebellar Purkinje cell.
J Physiol. 2005 Sep 15;567(Pt 3):829-50. doi: 10.1113/jphysiol.2005.089383. Epub 2005 Jul 7.
7
Early expression of AMPA receptors and lack of NMDA receptors in developing rat climbing fibre synapses.
J Physiol. 2005 May 1;564(Pt 3):751-63. doi: 10.1113/jphysiol.2005.084517. Epub 2005 Feb 24.
8
Activity-dependent synaptic plasticity in the central nucleus of the amygdala.
J Neurosci. 2005 Feb 16;25(7):1847-55. doi: 10.1523/JNEUROSCI.3713-04.2005.
9
Climbing fiber synaptic plasticity and modifications in Purkinje cell excitability.
Prog Brain Res. 2005;148:81-94. doi: 10.1016/S0079-6123(04)48008-X.
10
Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.
J Neurosci. 2005 Jan 12;25(2):454-63. doi: 10.1523/JNEUROSCI.3045-04.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验