Conti Rossella, Auger Céline
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Elife. 2024 Dec 11;13:RP96140. doi: 10.7554/eLife.96140.
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
小脑颗粒细胞在单个浦肯野细胞上形成多达175,000个兴奋性突触,将来自苔藓纤维输入的各种信息编码到小脑皮质中。颗粒细胞轴突由一个上升部分和一个成直角延伸的长平行纤维组成,这种结构表明轴突的这两个部分形成的突触可能编码不同的信息。有争议的迹象表明,上升轴突(AA)和平行纤维(PF)的突触特性和可塑性模式是不同的。我们测试了以下假设:AA和PF突触编码不同的信息,并且这些不同的输入与浦肯野细胞的关联可能与回路相关并触发可塑性,类似于PF和攀缘纤维输入的同时激活。在这里,通过记录来自近端或远端颗粒细胞(分别主要是AA和PF突触)的浦肯野细胞中的突触电流,我们描述了这两种不同颗粒细胞输入之间一种新的联合可塑性形式。我们首次表明,在抑制完整的情况下,同步的AA和PF重复序列刺激特异性地触发AA突触处的长时程增强(LTP)。此外,两种输入的呈现时间控制可塑性的结果,并且诱导需要NMDAR和mGluR1激活。PF的长长度使我们能够优先独立激活这两种输入,并且尽管缺乏连接的形态重建,但这些观察结果强化了以下观点:AA和PF突触具有不同的编码能力和联合可塑性,能够有效地关联通过颗粒细胞传递的信息。