Suppr超能文献

使用高阶光谱进行无峰列表的蛋白质分配。

Protein assignments without peak lists using higher-order spectra.

作者信息

Benison Gregory, Berkholz Donald S, Barbar Elisar

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.

出版信息

J Magn Reson. 2007 Dec;189(2):173-81. doi: 10.1016/j.jmr.2007.09.009. Epub 2007 Sep 20.

Abstract

Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.

摘要

尽管在自动化生成和处理用于生物分子归属的峰列表方面取得了进展,但直接处理光谱仍有一些众所周知的优势:在存在噪声、重叠和光谱伪像等混杂因素的情况下,从等高线图中挑选峰关系时,人眼仍优于计算机算法。在此,我们提出了一种称为高阶光谱的结构,通过直接目视检查来识别许多通常通过搜索峰列表确定的相同关系,使其成为可用于解决归属问题的工具集(与峰挑选和自动归属一起)中的又一个补充。该技术可用于在任何光谱类型中搜索相关峰。本文展示了该技术在两种蛋白质(AhpFn和IC74(84 - 143))新颖、完整的序列归属中的应用。用于生成和显示高阶光谱的程序“穴小鸮”可从(http://sourceforge.net/projects/burrow - owl)获取,或向作者索取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验