Suppr超能文献

初始存在嗜睡症状的睡眠呼吸暂停患者在持续气道正压通气治疗下的残余主观日间嗜睡:一项使用数据挖掘方法的初步研究

Residual subjective daytime sleepiness under CPAP treatment in initially somnolent apnea patients: a pilot study using data mining methods.

作者信息

Nguyên Xuân-Lan, Rakotonanahary Dominique, Chaskalovic Joël, Philippe Carole, Hausser-Hauw Chantal, Lebeau Bernard, Fleury Bernard

机构信息

Unité de Sommeil-Service de Pneumologie, Hôpital Saint-Antoine, Paris, France.

出版信息

Sleep Med. 2008 Jul;9(5):511-6. doi: 10.1016/j.sleep.2007.07.016. Epub 2007 Oct 24.

Abstract

BACKGROUND AND PURPOSE

Despite correct treatment with positive airway pressure (PAP), obstructive sleep apnea (OSA) patients sometimes remain subjectively somnolent. The reliability of the Epworth Sleepiness Scale (ESS) has been established for healthy subjects and patients under stable conditions; the ESS may eventually vary among treated OSA patients, biasing the results of a cross-sectional analysis of persisting sleepiness. The objective of this study was to depict the evolution of subjective vigilance under treatment using an index of ESS variability (DeltaESS).

METHODS

In 80 OSA patients (apnea-hypopnea index [AHI]=54+/-26/h), initially somnolent (ESS=15+/-3) and treated with auto-titrating PAP (APAP) (oxyhaemoglobin desaturation index 3% [ODIapap]=3.4+/-2.2/h; daily APAP use=5.3+/-1.5 h) during 434+/-73 days, ESS scores were regularly collected four times every 109+/-36 days. DESS was calculated and data mining methods (Segmentation and Decision Tree) were used to determine homogeneous groups according to the evolution of ESS scores.

RESULTS

When assessed cross-sectionally, 14-25% of the subjects were recognized as somnolent, depending on the moment when ESS was administered. Using data mining methods, three groups were clearly identifiable: two without residual somnolence - group 1, n=38 (47%), with high DeltaESS=-2.9+/-0.8, baseline ESS=16.3+/-3.3, AHI=58.5+/-26.1/h, mean ESSapap=5.1+/-2.4 and group 2, n=31 (39%), with low DeltaESS=-1.1+/-0.5, baseline ESS=13.2+/-1.4, AHI=53+/-27.3/h, mean ESSapap=8.8+/-1.9; and one with persisting sleepiness; group 3, n=11 (14%), with low DeltaESS=-0.3+/-0.8, baseline ESS=16.3+/-3, AHI=38.7+/-10.8/h, mean ESSapap=14.1+/-1.9. Compliance to PAP was high and comparable in the three groups. Age and body mass index (BMI) did not differ.

CONCLUSION

Data mining methods helped to identify 14% of subjects with persisting sleepiness. Validation needs to be done on a larger population in order to determine predictive rules.

摘要

背景与目的

尽管采用持续气道正压通气(PAP)进行了正确治疗,但阻塞性睡眠呼吸暂停(OSA)患者有时仍主观感觉困倦。Epworth嗜睡量表(ESS)在健康受试者和病情稳定的患者中已确立其可靠性;在接受治疗的OSA患者中,ESS最终可能会有所不同,从而使对持续嗜睡情况的横断面分析结果产生偏差。本研究的目的是使用ESS变异性指数(DeltaESS)来描述治疗过程中主观警觉性的变化情况。

方法

在80例OSA患者(呼吸暂停低通气指数[AHI]=54±26次/小时)中,这些患者最初有嗜睡症状(ESS=15±3),并接受自动调压PAP(APAP)治疗(氧合血红蛋白去饱和指数3%[ODIapap]=3.4±2.2次/小时;每日APAP使用时间=5.3±1.5小时),为期434±73天,每109±36天定期收集4次ESS评分。计算DeltaESS,并使用数据挖掘方法(分段和决策树)根据ESS评分的变化确定同质组。

结果

横断面评估时,根据ESS测量时间的不同,14%-25%的受试者被认为有嗜睡症状。使用数据挖掘方法可明确识别出三组:两组无残余嗜睡症状——第1组,n=38(47%),DeltaESS较高=-2.9±0.8,基线ESS=16.3±3.3,AHI=58.5±26.1次/小时,平均ESSapap=5.1±2.4;第2组,n=31(39%),DeltaESS较低=-1.1±0.5,基线ESS=13.2±1.4,AHI=53±27.3次/小时,平均ESSapap=8.8±1.9;另一组有持续嗜睡症状;第3组,n=11(14%),DeltaESS较低=-0.3±0.8,基线ESS=16.3±3,AHI=38.7±10.8次/小时,平均ESSapap=14.1±1.9。三组对PAP的依从性都很高且相当。年龄和体重指数(BMI)无差异。

结论

数据挖掘方法有助于识别出14%有持续嗜睡症状的受试者。需要在更大规模人群上进行验证,以确定预测规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验