Khan Sharik R, Herman Jake, Krank Jessica, Serkova Natalie J, Churchill Mair E A, Suga Hiroaki, Farrand Stephen K
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Appl Environ Microbiol. 2007 Nov;73(22):7443-55. doi: 10.1128/AEM.01354-07. Epub 2007 Oct 5.
Phenazine production by Pseudomonas fluorescens 2-79 and P. chlororaphis isolates 30-84 and PCL1391 is regulated by quorum sensing through the activator PhzR and acyl-homoserine lactones (acyl-HSLs) synthesized by PhzI. PhzI from P. fluorescens 2-79 produces five acyl-HSLs that include four 3-hydroxy species. Of these, N-(3-hydroxyhexanoyl)-HSL is the biologically relevant ligand for PhzR. The quorum-sensing systems of P. chlororaphis strains 30-84 and PCL1391 have been reported to produce and respond to N-(hexanoyl)-HSL. These differences were of interest since PhzI and PhzR of strain 2-79 share almost 90% sequence identity with orthologs from strains 30-84 and PCL1391. In this study, as assessed by thin-layer chromatography, the three strains produce almost identical complements of acyl-HSLs. The major species produced by P. chlororaphis 30-84 were identified by mass spectrometry as 3-OH-acyl-HSLs with chain lengths of 6, 8, and 10 carbons. Heterologous bacteria expressing cloned phzI from strain 30-84 produced the four 3-OH acyl-HSLs in amounts similar to those seen for the wild type. Strain 30-84, but not strain 2-79, also produced N-(butanoyl)-HSL. A second acyl-HSL synthase of strain 30-84, CsaI, is responsible for the synthesis of this short-chain signal. Strain 30-84 accumulated N-(3-OH-hexanoyl)-HSL to the highest levels, more than 100-fold greater than that of N-(hexanoyl)-HSL. In titration assays, PhzR(30-84) responded to both N-(3-OH-hexanoyl)- and N-(hexanoyl)-HSL with equal sensitivities. However, only the 3-OH-hexanoyl signal is produced by strain 30-84 at levels high enough to activate PhzR. We conclude that strains 2-79, 30-84, and PCL1391 use N-(3-OH-hexanoyl)-HSL to activate PhzR.
荧光假单胞菌2-79、绿针假单胞菌分离株30-84和PCL1391产生吩嗪受群体感应调节,通过激活剂PhzR和由PhzI合成的酰基高丝氨酸内酯(acyl-HSLs)进行调控。荧光假单胞菌2-79的PhzI产生5种酰基高丝氨酸内酯,其中包括4种3-羟基类物质。其中,N-(3-羟基己酰基)-高丝氨酸内酯是与PhzR具有生物学相关性的配体。据报道,绿针假单胞菌菌株30-84和PCL1391的群体感应系统产生并响应N-(己酰基)-高丝氨酸内酯。这些差异令人感兴趣,因为菌株2-79的PhzI和PhzR与菌株30-84和PCL1391的直系同源物具有近90%的序列同一性。在本研究中,通过薄层色谱评估,这三种菌株产生的酰基高丝氨酸内酯几乎完全相同。绿针假单胞菌30-84产生的主要物质通过质谱鉴定为碳链长度为6、8和10的3-OH-酰基高丝氨酸内酯。表达克隆自菌株30-84的phzI的异源细菌产生的4种3-OH酰基高丝氨酸内酯的量与野生型相似。菌株30-84而非菌株2-79也产生N-(丁酰基)-高丝氨酸内酯。菌株30-84的第二种酰基高丝氨酸内酯合酶CsaI负责这种短链信号的合成。菌株30-84积累的N-(3-OH-己酰基)-高丝氨酸内酯水平最高,比N-(己酰基)-高丝氨酸内酯高100多倍。在滴定试验中,PhzR(30-84)对N-(3-OH-己酰基)-和N-(己酰基)-高丝氨酸内酯的反应灵敏度相同。然而,菌株30-84仅产生足够高的水平以激活PhzR的3-OH-己酰基信号。我们得出结论,菌株2-79、30-84和PCL1391使用N-(3-OH-己酰基)-高丝氨酸内酯来激活PhzR。