Bone Derek B J, Hammond James R
Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3325-32. doi: 10.1152/ajpheart.01006.2007. Epub 2007 Oct 5.
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.4 +/- 1 pmol.microl(-1).s(-1), with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs (K(m) = 96 +/- 37 microM; V(max) = 1.6 +/- 0.3 pmol.microl(-1).s(-1)) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine (K(i) = 19 +/- 7 microM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK(15) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na(+) or H(+). PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.
心血管活性代谢物(如腺苷)的水平受内皮细胞核苷转运体的调节。我们对原代人心脏微血管内皮细胞(hMVECs)的核苷和核碱基转运能力进行了表征。hMVECs通过对硝基苄基巯基嘌呤核糖苷敏感的平衡核苷转运体1(ENT1)积累2-[³H]氯腺苷,其最大转运速率(V(max))为3.4±1 pmol·μl⁻¹·s⁻¹,对硝基苄基巯基嘌呤核糖苷不敏感的ENT2无贡献。ENT1阻滞剂对2-氯腺苷摄取的抑制产生单相抑制曲线,这也与ENT2表达极少相符。尽管缺乏已知的核碱基转运系统,但核碱基[³H]次黄嘌呤仍在hMVECs内积累(米氏常数(K(m))= 96±37 μM;V(max) = 1.6±0.3 pmol·μl⁻¹·s⁻¹)。这种新型转运体对双嘧达莫不敏感,但可被腺嘌呤(抑制常数(K(i))= 19±7 μM)和其他嘌呤核碱基(包括化疗类似物)抑制。多种其他细胞类型也表达这种核碱基转运体,包括缺乏核苷转运体的PK(15)细胞系(PK15NTD)。对PK15NTD细胞中[³H]次黄嘌呤摄取的进一步表征表明,其摄取不依赖于钠离子(Na⁺)或氢离子(H⁺)。在ENT2抑制剂双嘧达莫存在的情况下,表达人ENT2的PK15NTD细胞积累的[³H]次黄嘌呤比PK15NTD细胞或hMVECs多4.5倍,这表明ENT2可通透的代谢物被截留。了解血管系统中的核苷和核碱基转运体概况将有助于进一步研究它们在诸如缺氧或缺血等病理生理状况中的作用。