Bone Derek B J, Antic Milica, Vilas Gonzalo, Hammond James R
Department of Physiology and Pharmacology, Western University, London, ON, Canada.
Department of Physiology and Pharmacology, Western University, London, ON, Canada.
Microvasc Res. 2014 Sep;95:68-75. doi: 10.1016/j.mvr.2014.06.008. Epub 2014 Jun 27.
Purine nucleosides and nucleobases play key roles in the physiological response to vascular ischemia/reperfusion events. The intra- and extracellular concentrations of these compounds are controlled, in part, by equilibrative nucleoside transporter subtype 1 (ENT1; SLC29A1) and by equilibrative nucleobase transporter subtype 1 (ENBT1). These transporters are expressed at the membranes of numerous cell types including microvascular endothelial cells. We studied the impact of reactive oxygen species on the function of ENT1 and ENBT1 in primary (CMVEC) and immortalized (HMEC-1) human microvascular endothelial cells. Both cell types displayed similar transporter expression profiles, with the majority (>90%) of 2-chloro[(3)H]adenosine (nucleoside) uptake mediated by ENT1 and [(3)H]hypoxanthine (nucleobase) uptake mediated by ENBT1. An in vitro mineral oil-overlay model of ischemia/reperfusion had no effect on ENT1 function, but significantly reduced ENBT1 Vmax in both cell types. This decrease in transport function was mimicked by the intracellular superoxide generator menadione and could be reversed by the superoxide dismutase mimetic MnTMPyP. In contrast, neither the extracellular peroxide donor TBHP nor the extracellular peroxynitrite donor 3-morpholinosydnonimine (SIN-1) affected ENBT1-mediated [(3)H]hypoxanthine uptake. SIN-1 did, however, enhance ENT1-mediated 2-chloro[(3)H]adenosine uptake. Our data establish HMEC-1 as an appropriate model for study of purine transport in CMVEC. Additionally, these data suggest that the generation of intracellular superoxide in ischemia/reperfusion leads to the down-regulation of ENBT1 function. Modification of purine transport by oxidant stress may contribute to ischemia/reperfusion induced vascular damage and should be considered in the development of therapeutic strategies.
嘌呤核苷和核碱基在血管缺血/再灌注事件的生理反应中起关键作用。这些化合物的细胞内和细胞外浓度部分受平衡核苷转运体1型(ENT1;SLC29A1)和平衡核碱基转运体1型(ENBT1)控制。这些转运体在包括微血管内皮细胞在内的多种细胞类型的膜上表达。我们研究了活性氧对原代(CMVEC)和永生化(HMEC-1)人微血管内皮细胞中ENT1和ENBT1功能的影响。两种细胞类型显示出相似的转运体表达谱,由ENT1介导的2-氯[(3)H]腺苷(核苷)摄取和由ENBT1介导的[(3)H]次黄嘌呤(核碱基)摄取占大多数(>90%)。缺血/再灌注的体外矿物油覆盖模型对ENT1功能无影响,但显著降低了两种细胞类型中ENBT1的Vmax。细胞内超氧化物生成剂甲萘醌模拟了这种转运功能的下降,超氧化物歧化酶模拟物MnTMPyP可使其逆转。相反,细胞外过氧化物供体叔丁基过氧化氢(TBHP)和细胞外过氧亚硝酸根供体3-吗啉代亚硝基胍(SIN-1)均不影响ENBT1介导的[(3)H]次黄嘌呤摄取。然而,SIN-1确实增强了ENT1介导的2-氯[(3)H]腺苷摄取。我们的数据确立了HMEC-1作为研究CMVEC中嘌呤转运的合适模型。此外,这些数据表明缺血/再灌注过程中细胞内超氧化物的产生导致ENBT1功能下调。氧化应激对嘌呤转运的改变可能导致缺血/再灌注诱导的血管损伤,在治疗策略的制定中应予以考虑。