Suppr超能文献

药物-靶点网络

Drug-target network.

作者信息

Yildirim Muhammed A, Goh Kwang-Il, Cusick Michael E, Barabási Albert-László, Vidal Marc

机构信息

Center for Cancer Systems Biology (CCSB), Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, USA.

出版信息

Nat Biotechnol. 2007 Oct;25(10):1119-26. doi: 10.1038/nbt1338.

Abstract

The global set of relationships between protein targets of all drugs and all disease-gene products in the human protein-protein interaction or 'interactome' network remains uncharacterized. We built a bipartite graph composed of US Food and Drug Administration-approved drugs and proteins linked by drug-target binary associations. The resulting network connects most drugs into a highly interlinked giant component, with strong local clustering of drugs of similar types according to Anatomical Therapeutic Chemical classification. Topological analyses of this network quantitatively showed an overabundance of 'follow-on' drugs, that is, drugs that target already targeted proteins. By including drugs currently under investigation, we identified a trend toward more functionally diverse targets improving polypharmacology. To analyze the relationships between drug targets and disease-gene products, we measured the shortest distance between both sets of proteins in current models of the human interactome network. Significant differences in distance were found between etiological and palliative drugs. A recent trend toward more rational drug design was observed.

摘要

在人类蛋白质 - 蛋白质相互作用(即“互作组”)网络中,所有药物的蛋白质靶点与所有疾病基因产物之间的全球关系集仍未得到表征。我们构建了一个二分图,该图由美国食品药品监督管理局批准的药物和通过药物 - 靶点二元关联连接的蛋白质组成。所得网络将大多数药物连接成一个高度互联的巨型组件,根据解剖治疗化学分类,相似类型的药物具有很强的局部聚集性。对该网络的拓扑分析定量显示,“后续”药物(即靶向已被靶向蛋白质的药物)数量过多。通过纳入目前正在研究的药物,我们发现了一种趋势,即更多功能多样的靶点正在改善多药理学特性。为了分析药物靶点与疾病基因产物之间的关系,我们在当前人类互作组网络模型中测量了这两组蛋白质之间的最短距离。在病因性药物和姑息性药物之间发现了距离上的显著差异。观察到了最近朝着更合理药物设计发展的趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验