Martin Shawn, Brown W Michael, Faulon Jean-Loup
Computational Biology, Sandia National Laboratories, PO Box 5800, 87185-1316, Albuquerque, NM 87185-1316, USA.
Adv Biochem Eng Biotechnol. 2008;110:215-45. doi: 10.1007/10_2007_084.
There is a wide variety of experimental methods for the identification of protein interactions. This variety has in turn spurred the development of numerous different computational approaches for modeling and predicting protein interactions. These methods range from detailed structure-based methods capable of operating on only a single pair of proteins at a time to approximate statistical methods capable of making predictions on multiple proteomes simultaneously. In this chapter, we provide a brief discussion of the relative merits of different experimental and computational methods available for identifying protein interactions. Then we focus on the application of our particular (computational) method using Support Vector Machine product kernels. We describe our method in detail and discuss the application of the method for predicting protein-protein interactions, beta-strand interactions, and protein-chemical interactions.
用于鉴定蛋白质相互作用的实验方法多种多样。这种多样性反过来又推动了众多不同计算方法的发展,用于对蛋白质相互作用进行建模和预测。这些方法涵盖了从一次仅能处理一对蛋白质的基于详细结构的方法,到能够同时对多个蛋白质组进行预测的近似统计方法。在本章中,我们简要讨论可用于鉴定蛋白质相互作用的不同实验和计算方法的相对优点。然后我们重点介绍使用支持向量机乘积核的特定(计算)方法的应用。我们详细描述我们的方法,并讨论该方法在预测蛋白质 - 蛋白质相互作用、β - 链相互作用和蛋白质 - 化学相互作用方面的应用。