Goddard Gregory R, Sanders Claire K, Martin John C, Kaduchak Gregory, Graves Steven W
National Flow Cytometry Resource, Mail Stop M888, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA.
Anal Chem. 2007 Nov 15;79(22):8740-6. doi: 10.1021/ac071402t. Epub 2007 Oct 9.
Creation of inexpensive small-flow cytometers is important for applications ranging from disease diagnosis in resource-poor areas to use in distributed sensor networks. In conventional-flow cytometers, hydrodynamics focus particles to the center of a flow stream for analysis, which requires sheath fluid that increases consumable use and waste while dramatically reducing instrument portability. Here we have evaluated, using quantitative measurements of fluorescent microspheres and cells, the performance of a flow cytometer that uses acoustic energy to focus particles to the center of a flow stream. This evaluation demonstrated measurement precision for fluorescence and side scatter CVs for alignment microspheres of 2.54% and 7.7%, respectively. Particles bearing 7 x 10(3) fluorophores were well resolved in a background of 50 nM free fluorophore. The lower limit of detection was determined to be about 650 fluorescein molecules. Analysis of Chinese hamster cells on the system demonstrated that acoustic focusing had no effect on cellular viability. These results indicate that the ultrasonic flow cytometer has the necessary performance for most flow cytometry applications. Furthermore, through robust engineering approaches and the combination of acoustic focusing with low-cost light sources, detectors, and data acquisition systems, it will be possible to achieve a low-cost, truly portable flow cytometer.
制造价格低廉的小型流式细胞仪对于从资源匮乏地区的疾病诊断到分布式传感器网络中的应用等一系列应用都很重要。在传统流式细胞仪中,流体动力学将颗粒聚焦到流束中心进行分析,这需要鞘液,这会增加耗材使用和浪费,同时大幅降低仪器的便携性。在此,我们使用荧光微球和细胞的定量测量方法,评估了一种利用声能将颗粒聚焦到流束中心的流式细胞仪的性能。该评估表明,校准微球的荧光和侧向散射CV的测量精度分别为2.54%和7.7%。携带7×10³个荧光团的颗粒在50 nM游离荧光团的背景中得到了很好的分辨。检测下限确定为约650个荧光素分子。在该系统上对中国仓鼠细胞的分析表明,声聚焦对细胞活力没有影响。这些结果表明,超声流式细胞仪具有大多数流式细胞术应用所需的性能。此外,通过稳健的工程方法以及将声聚焦与低成本光源、探测器和数据采集系统相结合,有可能实现低成本、真正便携的流式细胞仪。