Suppr超能文献

U6 RNA内部茎环结构中的动态凸起在剪接体组装和激活过程中发挥作用。

A dynamic bulge in the U6 RNA internal stem-loop functions in spliceosome assembly and activation.

作者信息

McManus C Joel, Schwartz Matthew L, Butcher Samuel E, Brow David A

机构信息

Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.

出版信息

RNA. 2007 Dec;13(12):2252-65. doi: 10.1261/rna.699907. Epub 2007 Oct 9.

Abstract

The highly conserved internal stem-loop (ISL) of U6 spliceosomal RNA is unwound for U4/U6 complex formation during spliceosome assembly and reformed upon U4 release during spliceosome activation. The U6 ISL is structurally similar to Domain 5 of group II self-splicing introns, and contains a dynamic bulge that coordinates a Mg++ ion essential for the first catalytic step of splicing. We have analyzed the causes of growth defects resulting from mutations in the Saccharomyces cerevisiae U6 ISL-bulged nucleotide U80 and the adjacent C67-A79 base pair. Intragenic suppressors and enhancers of the cold-sensitive A79G mutation, which replaces the C-A pair with a C-G pair, suggest that it stabilizes the ISL, inhibits U4/U6 assembly, and may also disrupt spliceosome activation. The lethality of mutations C67A and C67G results from disruption of base-pairing potential between U4 and U6, as these mutations are fully suppressed by compensatory mutations in U4 RNA. Strikingly, suppressor analysis shows that the lethality of the U80G mutation is due not only to formation of a stable base pair with C67, as previously proposed, but also another defect. A U6-U80G strain in which mispairing with position 67 is prevented grows poorly and assembles aberrant spliceosomes that retain U1 snRNP and fail to fully unwind the U4/U6 complex at elevated temperatures. Our data suggest that the U6 ISL bulge is important for coupling U1 snRNP release with U4/U6 unwinding during spliceosome activation.

摘要

U6剪接体RNA高度保守的内部茎环(ISL)在剪接体组装过程中解旋以形成U4/U6复合物,并在剪接体激活期间U4释放时重新形成。U6 ISL在结构上类似于II组自剪接内含子的结构域5,并包含一个动态凸起,该凸起协调剪接第一步所需的Mg++离子。我们分析了酿酒酵母U6 ISL凸起核苷酸U80和相邻的C67-A79碱基对突变导致生长缺陷的原因。冷敏感的A79G突变(用C-G对取代C-A对)的基因内抑制子和增强子表明,它稳定了ISL,抑制了U4/U6组装,并且可能还破坏了剪接体激活。C67A和C67G突变的致死性是由于U4和U6之间碱基配对潜力的破坏,因为这些突变被U4 RNA中的补偿性突变完全抑制。引人注目的是,抑制子分析表明,U80G突变的致死性不仅如先前提出的那样是由于与C67形成了稳定的碱基对,还由于另一个缺陷。在一个防止与67位错配的U6-U80G菌株中,生长不良并组装异常剪接体,这些剪接体保留U1 snRNP,并且在高温下无法完全解旋U4/U6复合物。我们的数据表明,U6 ISL凸起对于在剪接体激活期间将U1 snRNP释放与U4/U6解旋偶联很重要。

相似文献

1
A dynamic bulge in the U6 RNA internal stem-loop functions in spliceosome assembly and activation.
RNA. 2007 Dec;13(12):2252-65. doi: 10.1261/rna.699907. Epub 2007 Oct 9.
2
Spliceosome assembly in the absence of stable U4/U6 RNA pairing.
RNA. 2015 May;21(5):923-34. doi: 10.1261/rna.048421.114. Epub 2015 Mar 11.
4
Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome.
Mol Cell. 1999 Jan;3(1):65-75. doi: 10.1016/s1097-2765(00)80175-6.
5
A stem/loop in U6 RNA defines a conformational switch required for pre-mRNA splicing.
Genes Dev. 1994 Jan;8(2):221-33. doi: 10.1101/gad.8.2.221.
9
A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex.
Nucleic Acids Res. 2016 Dec 15;44(22):10912-10928. doi: 10.1093/nar/gkw686. Epub 2016 Aug 2.

引用本文的文献

2
Thermodynamic examination of pH and magnesium effect on U6 RNA internal loop.
RNA. 2019 Dec;25(12):1779-1792. doi: 10.1261/rna.070466.119. Epub 2019 Sep 23.
3
An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in .
Genetics. 2019 May;212(1):111-124. doi: 10.1534/genetics.119.301922. Epub 2019 Mar 21.
4
The life of U6 small nuclear RNA, from cradle to grave.
RNA. 2018 Apr;24(4):437-460. doi: 10.1261/rna.065136.117. Epub 2018 Jan 24.
5
Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes.
Biochemistry. 2017 Jan 10;56(1):3-13. doi: 10.1021/acs.biochem.6b01106. Epub 2016 Dec 29.
6
A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex.
Nucleic Acids Res. 2016 Dec 15;44(22):10912-10928. doi: 10.1093/nar/gkw686. Epub 2016 Aug 2.
7
Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.
Biochemistry. 2015 Sep 1;54(34):5290-6. doi: 10.1021/acs.biochem.5b00474. Epub 2015 Aug 19.
8
Spliceosome assembly in the absence of stable U4/U6 RNA pairing.
RNA. 2015 May;21(5):923-34. doi: 10.1261/rna.048421.114. Epub 2015 Mar 11.
9
Brr2 plays a role in spliceosomal activation in addition to U4/U6 unwinding.
Nucleic Acids Res. 2015 Mar 31;43(6):3286-97. doi: 10.1093/nar/gkv062. Epub 2015 Feb 10.
10
Improved model to predict the free energy contribution of trinucleotide bulges to RNA duplex stability.
Biochemistry. 2014 Jun 3;53(21):3502-8. doi: 10.1021/bi500204e. Epub 2014 May 22.

本文引用的文献

1
Fluorescence and solution NMR study of the active site of a 160-kDa group II intron ribozyme.
RNA. 2006 Sep;12(9):1693-707. doi: 10.1261/rna.137006. Epub 2006 Aug 7.
2
The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase.
Mol Cell. 2006 Aug 4;23(3):389-99. doi: 10.1016/j.molcel.2006.05.043.
3
Proximity of conserved U6 and U2 snRNA elements to the 5' splice site region in activated spliceosomes.
EMBO J. 2006 Jun 7;25(11):2475-86. doi: 10.1038/sj.emboj.7601134. Epub 2006 May 11.
4
Exon ligation is proofread by the DExD/H-box ATPase Prp22p.
Nat Struct Mol Biol. 2006 Jun;13(6):482-90. doi: 10.1038/nsmb1093. Epub 2006 May 7.
5
Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3262-7. doi: 10.1073/pnas.0507783103. Epub 2006 Feb 16.
7
RNA structure and RNA-protein interactions in purified yeast U6 snRNPs.
J Mol Biol. 2006 Mar 10;356(5):1248-62. doi: 10.1016/j.jmb.2005.12.013. Epub 2005 Dec 20.
8
Dynamics and metal ion binding in the U6 RNA intramolecular stem-loop as analyzed by NMR.
J Mol Biol. 2005 Oct 28;353(3):540-55. doi: 10.1016/j.jmb.2005.08.030. Epub 2005 Sep 2.
9
Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation.
Genetics. 2005 Jul;170(3):1063-80. doi: 10.1534/genetics.105.042044. Epub 2005 May 23.
10
Prp8 protein: at the heart of the spliceosome.
RNA. 2005 May;11(5):533-57. doi: 10.1261/rna.2220705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验