Suppr超能文献

遗传分析揭示了酿酒酵母GTP酶Snu114的C末端在剪接体激活过程中的作用。

Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation.

作者信息

Brenner Tamara J, Guthrie Christine

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2200, USA.

出版信息

Genetics. 2005 Jul;170(3):1063-80. doi: 10.1534/genetics.105.042044. Epub 2005 May 23.

Abstract

Snu114 is the only GTPase required for mRNA splicing. As a homolog of elongation factor G, it contains three domains (III-V) predicted to undergo a large rearrangement following GTP hydrolysis. To assess the functional importance of the domains of Snu114, we used random mutagenesis to create conditionally lethal alleles. We identified three main classes: (1) mutations that are predicted to affect GTP binding and hydrolysis, (2) mutations that are clustered in 10- to 20-amino-acid stretches in each of domains III-V, and (3) mutations that result in deletion of up to 70 amino acids from the C terminus. Representative mutations from each of these classes blocked the first step of splicing in vivo and in vitro. The growth defects caused by most alleles were synthetically exacerbated by mutations in PRP8, a U5 snRNP protein that physically interacts with Snu114, as well as in genes involved in snRNP biogenesis, including SAD1 and BRR1. The allele snu114-60, which truncates the C terminus, was synthetically lethal with factors required for activation of the spliceosome, including the DExD/H-box ATPases BRR2 and PRP28. We propose that GTP hydrolysis results in a rearrangement between Prp8 and the C terminus of Snu114 that leads to release of U1 and U4, thus activating the spliceosome for catalysis.

摘要

Snu114是mRNA剪接所需的唯一GTP酶。作为延伸因子G的同源物,它包含三个结构域(III-V),预计在GTP水解后会发生大规模重排。为了评估Snu114结构域的功能重要性,我们使用随机诱变来创建条件致死等位基因。我们确定了三个主要类别:(1)预计会影响GTP结合和水解的突变;(2)聚集在结构域III-V中每一个的10至20个氨基酸片段中的突变;(3)导致从C末端缺失多达70个氨基酸的突变。这些类别中每一类的代表性突变在体内和体外均阻断了剪接的第一步。大多数等位基因引起的生长缺陷因PRP8(一种与Snu114发生物理相互作用的U5 snRNP蛋白)以及参与snRNP生物合成的基因(包括SAD1和BRR1)中的突变而在合成上加剧。截断C末端的等位基因snu114-60与剪接体激活所需的因子(包括DExD/H盒ATP酶BRR2和PRP28)在合成上是致死的。我们提出,GTP水解导致Prp8与Snu114的C末端之间发生重排,从而导致U1和U4的释放,从而激活剪接体进行催化。

相似文献

1
Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation.
Genetics. 2005 Jul;170(3):1063-80. doi: 10.1534/genetics.105.042044. Epub 2005 May 23.
2
Assembly of Snu114 into U5 snRNP requires Prp8 and a functional GTPase domain.
RNA. 2006 May;12(5):862-71. doi: 10.1261/rna.2319806. Epub 2006 Mar 15.
6
Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy.
Nat Struct Mol Biol. 2008 Nov;15(11):1206-12. doi: 10.1038/nsmb.1506. Epub 2008 Oct 26.
7
Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9145-9. doi: 10.1073/pnas.102304299. Epub 2002 Jun 26.
9
The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis.
Science. 2016 Jan 29;351(6272):466-75. doi: 10.1126/science.aad6466. Epub 2016 Jan 7.
10
The ribosomal translocase homologue Snu114p is involved in unwinding U4/U6 RNA during activation of the spliceosome.
EMBO Rep. 2002 Sep;3(9):875-80. doi: 10.1093/embo-reports/kvf172. Epub 2002 Aug 16.

引用本文的文献

4
Spliceosomal GTPase Eftud2 regulates microglial activation and polarization.
Neural Regen Res. 2023 Apr;18(4):856-862. doi: 10.4103/1673-5374.347739.
5
Over-activation of EFTUD2 correlates with tumor propagation and poor survival outcomes in hepatocellular carcinoma.
Clin Transl Oncol. 2022 Jan;24(1):93-103. doi: 10.1007/s12094-021-02673-y. Epub 2021 Jul 19.
6
Activation of Prp28 ATPase by phosphorylated Npl3 at a critical step of spliceosome remodeling.
Nat Commun. 2021 May 25;12(1):3082. doi: 10.1038/s41467-021-23459-4.
7
The Role of the U5 snRNP in Genetic Disorders and Cancer.
Front Genet. 2021 Jan 28;12:636620. doi: 10.3389/fgene.2021.636620. eCollection 2021.
8
A Snu114-GTP-Prp8 module forms a relay station for efficient splicing in yeast.
Nucleic Acids Res. 2020 May 7;48(8):4572-4584. doi: 10.1093/nar/gkaa182.
10
An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in .
Genetics. 2019 May;212(1):111-124. doi: 10.1534/genetics.119.301922. Epub 2019 Mar 21.

本文引用的文献

1
Prp8 protein: at the heart of the spliceosome.
RNA. 2005 May;11(5):533-57. doi: 10.1261/rna.2220705.
2
Recognition and selection of tRNA in translation.
FEBS Lett. 2005 Feb 7;579(4):938-42. doi: 10.1016/j.febslet.2004.11.048.
3
The Prp19p-associated complex in spliceosome activation.
Science. 2003 Oct 10;302(5643):279-82. doi: 10.1126/science.1086602. Epub 2003 Sep 11.
4
Pre-mRNA splicing: awash in a sea of proteins.
Mol Cell. 2003 Jul;12(1):5-14. doi: 10.1016/s1097-2765(03)00270-3.
5
A proteomics approach to understanding protein ubiquitination.
Nat Biotechnol. 2003 Aug;21(8):921-6. doi: 10.1038/nbt849. Epub 2003 Jul 20.
6
Mutagenesis suggests several roles of Snu114p in pre-mRNA splicing.
J Biol Chem. 2003 Jul 25;278(30):28324-34. doi: 10.1074/jbc.M303043200. Epub 2003 May 7.
8
Structural insights into the U-box, a domain associated with multi-ubiquitination.
Nat Struct Biol. 2003 Apr;10(4):250-5. doi: 10.1038/nsb906.
9
10
Allosteric cascade of spliceosome activation.
Annu Rev Genet. 2002;36:333-60. doi: 10.1146/annurev.genet.36.043002.091635. Epub 2002 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验