Leung Kevin, Cheong France, Cheong Christopher
School of Business Information Technology, RMIT University, Melbourne, Vic 3000, Australia.
IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1344-56. doi: 10.1109/tsmcb.2007.903194.
Current artificial immune system (AIS) classifiers have two major problems: 1) their populations of B-cells can grow to huge proportions, and 2) optimizing one B-cell (part of the classifier) at a time does not necessarily guarantee that the B-cell pool (the whole classifier) will be optimized. In this paper, the design of a new AIS algorithm and classifier system called simple AIS is described. It is different from traditional AIS classifiers in that it takes only one B-cell, instead of a B-cell pool, to represent the classifier. This approach ensures global optimization of the whole system, and in addition, no population control mechanism is needed. The classifier was tested on seven benchmark data sets using different classification techniques and was found to be very competitive when compared to other classifiers.
当前的人工免疫系统(AIS)分类器存在两个主要问题:1)其B细胞群体可能增长到极大的规模,并且2)一次优化一个B细胞(分类器的一部分)并不一定能保证B细胞库(整个分类器)得到优化。本文描述了一种名为简单人工免疫系统(Simple AIS)的新AIS算法和分类器系统的设计。它与传统的AIS分类器不同,因为它仅采用一个B细胞而非一个B细胞库来表示分类器。这种方法确保了整个系统的全局优化,此外,无需种群控制机制。该分类器使用不同的分类技术在七个基准数据集上进行了测试,并且与其他分类器相比具有很强的竞争力。