Sarafijanović Slavisa, Le Boudec Jean-Yves
Ecole Polytechnique Féderalé de Laussane (EPFL), Lau- sanne, Switzerland.
IEEE Trans Neural Netw. 2005 Sep;16(5):1076-87. doi: 10.1109/TNN.2005.853419.
In mobile ad hoc networks, nodes act both as terminals and information relays, and they participate in a common routing protocol, such as dynamic source routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. In this paper, we investigate the use of an artificial immune system (AIS) to detect node misbehavior in a mobile ad hoc network using DSR. The system is inspired by the natural immune system (IS) of vertebrates. Our goal is to build a system that, like its natural counterpart, automatically learns, and detects new misbehavior. We describe our solution for the classification task of the AIS; it employs negative selection and clonal selection, the algorithms for learning and adaptation used by the natural IS. We define how we map the natural IS concepts such as self, antigen, and antibody to a mobile ad hoc network and give the resulting algorithm for classifying nodes as misbehaving. We implemented the system in the network simulator Glomosim; we present detection results and discuss how the system parameters affect the performance of primary and secondary response. Further steps will extend the design by using an analogy to the innate system, danger signal, and memory cells.
在移动自组织网络中,节点既充当终端又作为信息中继,并且它们参与诸如动态源路由(DSR)之类的通用路由协议。由于存在故障节点或恶意节点,该网络容易受到路由行为不当的影响。行为不当检测系统旨在消除这种漏洞。在本文中,我们研究了使用人工免疫系统(AIS)来检测使用DSR的移动自组织网络中的节点行为不当情况。该系统受到脊椎动物自然免疫系统(IS)的启发。我们的目标是构建一个像其天然对应物一样能够自动学习并检测新的行为不当情况的系统。我们描述了针对AIS分类任务的解决方案;它采用了阴性选择和克隆选择,这是自然免疫系统用于学习和适应的算法。我们定义了如何将诸如自身、抗原和抗体等自然免疫系统概念映射到移动自组织网络,并给出了将节点分类为行为不当的最终算法。我们在网络模拟器Glomosim中实现了该系统;我们展示了检测结果,并讨论了系统参数如何影响初次和二次响应的性能。进一步的步骤将通过类比先天系统、危险信号和记忆细胞来扩展设计。