Lara Alvaro R, Caspeta Luis, Gosset Guillermo, Bolívar Francisco, Ramírez Octavio T
Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, AP 510-3, Morelos 62250, Mexico.
Biotechnol Bioeng. 2008 Mar 1;99(4):893-901. doi: 10.1002/bit.21664.
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches.
溢流代谢是大肠杆菌好氧培养中一种不良特性。它源于葡萄糖消耗速率升高,导致大量底物转化为乙酸盐,严重影响细胞生理和生物过程性能。这种现象通常发生在高葡萄糖浓度的分批培养中。补料分批培养是一种经典的生物过程替代方法,通过外部添加葡萄糖来控制葡萄糖摄取速率,以防止溢流代谢。尽管其广泛应用,但补料分批模式存在一些缺点,而如果能有效防止溢流代谢,在高初始葡萄糖浓度下进行更简单的分批培养就可以克服这些缺点。在本研究中,一株缺乏磷酸烯醇丙酮酸:碳水化合物磷酸转移酶系统(PTS)且具有改良葡萄糖转运系统的大肠杆菌菌株(VH32),在分批模式下于高达100 g/L的葡萄糖浓度下培养,同时表达重组绿色荧光蛋白(GFP)。在测试的最高葡萄糖浓度下,亲本菌株(W3110)的乙酸盐积累量最高达到13.6 g/L,而VH32仅观察到最高浓度为2 g/L。因此,在100 g/L葡萄糖的VH32培养物中,分别实现了52 g/L和8.2 g/L的高细胞浓度和GFP浓度。相比之下,W3110培养物中的最大生物量和GFP仅分别达到工程菌株所达到值的65%和48%。本文还将这种培养策略与W3110的传统补料分批培养进行了比较。本研究表明,通过代谢工程规避溢流代谢,在简单的分批培养中可以获得高细胞浓度和重组蛋白浓度。这代表了一种不同于经典生物过程方法的新颖且有价值的替代方法。