Suppr超能文献

在谷氨酸棒杆菌中碳水化合物代谢系统的代谢工程改造以提高混合糖生产 L-赖氨酸的效率。

Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar.

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China.

State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China.

出版信息

Microb Cell Fact. 2020 Feb 18;19(1):39. doi: 10.1186/s12934-020-1294-7.

Abstract

The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of L-lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum. L-lysine production was further increased through replacement of phosphoenolpyruvate-dependent glucose and fructose uptake system (PTS and PTS) by inositol permeases (IolT1 and IolT2) and ATP-dependent glucokinase (ATP-GlK). However, the shortage of intracellular ATP has a significantly negative impact on sugar consumption rate, cell growth and L-lysine production. To overcome this defect, the recombinant strain was modified to co-express bifunctional ADP-dependent glucokinase (ADP-GlK/PFK) and NADH dehydrogenase (NDH-2) as well as to inactivate SigmaH factor (SigH), thus reducing the consumption of ATP and increasing ATP regeneration. Combination of these genetic modifications resulted in an engineered C. glutamicum strain K-8 capable of producing 221.3 ± 17.6 g/L L-lysine with productivity of 5.53 g/L/h and carbon yield of 0.71 g/g glucose in fed-batch fermentation. As far as we know, this is the best efficiency of L-lysine production from mixed sugar. This is also the first report for improving the efficiency of L-lysine production by systematic modification of carbohydrate metabolism systems.

摘要

工业发酵过程的效率主要取决于碳产率、最终浓度和生产力。为了提高混合糖生产 L-赖氨酸的效率,我们对碳水化合物代谢系统进行了工程改造,以增强糖的有效利用。通过引入丙酮丁醇梭菌的果糖激酶,构建了蔗糖和果糖的功能性代谢途径。通过肌醇通透酶(IolT1 和 IolT2)和 ATP 依赖性葡萄糖激酶(ATP-GlK)替代磷酸烯醇丙酮酸依赖性葡萄糖和果糖摄取系统(PTS 和 PTS),进一步提高了 L-赖氨酸的产量。然而,细胞内 ATP 的短缺对糖消耗速率、细胞生长和 L-赖氨酸的生产有显著的负面影响。为了克服这一缺陷,对重组菌株进行了修饰,共表达双功能 ADP 依赖性葡萄糖激酶(ADP-GlK/PFK)和 NADH 脱氢酶(NDH-2),并使 SigmaH 因子(SigH)失活,从而减少 ATP 的消耗并增加 ATP 的再生。这些遗传修饰的结合使工程化的 C. glutamicum 菌株 K-8 能够在分批补料发酵中生产 221.3 ± 17.6 g/L 的 L-赖氨酸,生产强度为 5.53 g/L/h,碳产率为 0.71 g/g 葡萄糖。据我们所知,这是混合糖生产 L-赖氨酸的最佳效率。这也是首次通过系统修饰碳水化合物代谢系统来提高 L-赖氨酸生产效率的报道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea51/7029506/631238abbda5/12934_2020_1294_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验