Suppr超能文献

一维中的反常热传导:量子计算

Anomalous thermal conduction in one dimension: a quantum calculation.

作者信息

Santhosh G, Kumar Deepak

机构信息

School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021105. doi: 10.1103/PhysRevE.76.021105. Epub 2007 Aug 3.

Abstract

In this paper, we study the thermal conductivity of an anharmonically coupled chain of atoms. Numerical studies using classical dynamics have shown that the conductivity of a chain with nearest neighbor couplings diverges with chain length L as L(alpha); earlier studies found alpha approximately = 0.4 under a range of conditions, but a recent study on longer chains claims alpha = 1/3. Analytically, this problem has been studied by calculating the relaxation rate gamma(q) of the normal modes of vibration as a function of its wave vector q. Two theoretical studies of classical chains, one using the mode-coupling formulation and the other the Boltzmann equation method, led to gamma(q) proportional to q(5/3), which is consistent with alpha = 0.4. Here we study the problem for a quantum anharmonic chain with quartic anisotropy. We develop a low-temperature expansion for gamma(q) and find that, in the regime Dirac's constant omega(q) << k(B)T, gamma(q) is proportional to q(5/3)T2, where omega(q) is the frequency of the mode. In our analysis, the relaxation arises due to umklapp scattering processes. We further evaluate the thermal conductivity of the chain using the Kubo formula, which enables us to take into account the transport relaxation time through vertex corrections for the current-current correlator. This calculation also yields alpha = 0.4.

摘要

在本文中,我们研究了非简谐耦合原子链的热导率。使用经典动力学的数值研究表明,具有最近邻耦合的链的电导率随链长(L)以(L^{\alpha})的形式发散;早期研究在一系列条件下发现(\alpha)约为(0.4),但最近一项针对更长链的研究声称(\alpha = 1/3)。从分析角度来看,通过计算振动正常模式的弛豫率(\gamma(q))作为其波矢(q)的函数来研究这个问题。对经典链的两项理论研究,一项使用模式耦合公式,另一项使用玻尔兹曼方程方法,得出(\gamma(q))与(q^{5/3})成正比,这与(\alpha = 0.4)一致。在这里,我们研究具有四次方各向异性的量子非简谐链的问题。我们为(\gamma(q))发展了一种低温展开式,并发现,在狄拉克常数(\omega(q) \ll k_{B}T)的区域,(\gamma(q))与(q^{5/3}T^{2})成正比,其中(\omega(q))是模式的频率。在我们的分析中,弛豫是由于倒逆散射过程引起的。我们使用久保公式进一步评估链的热导率,这使我们能够通过对电流 - 电流关联函数的顶点修正来考虑输运弛豫时间。该计算也得出(\alpha = 0.4)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验