Suppr超能文献

用于检测大规模网络中社区结构的近线性时间算法。

Near linear time algorithm to detect community structures in large-scale networks.

作者信息

Raghavan Usha Nandini, Albert Réka, Kumara Soundar

机构信息

Department of Industrial Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036106. doi: 10.1103/PhysRevE.76.036106. Epub 2007 Sep 11.

Abstract

Community detection and analysis is an important methodology for understanding the organization of various real-world networks and has applications in problems as diverse as consensus formation in social communities or the identification of functional modules in biochemical networks. Currently used algorithms that identify the community structures in large-scale real-world networks require a priori information such as the number and sizes of communities or are computationally expensive. In this paper we investigate a simple label propagation algorithm that uses the network structure alone as its guide and requires neither optimization of a predefined objective function nor prior information about the communities. In our algorithm every node is initialized with a unique label and at every step each node adopts the label that most of its neighbors currently have. In this iterative process densely connected groups of nodes form a consensus on a unique label to form communities. We validate the algorithm by applying it to networks whose community structures are known. We also demonstrate that the algorithm takes an almost linear time and hence it is computationally less expensive than what was possible so far.

摘要

社区检测与分析是理解各种现实世界网络组织的重要方法,在社会社区中的共识形成或生化网络中功能模块的识别等各种不同问题中都有应用。目前用于识别大规模现实世界网络中社区结构的算法需要诸如社区数量和规模等先验信息,或者计算成本很高。在本文中,我们研究了一种简单的标签传播算法,该算法仅以网络结构为指导,既不需要优化预定义的目标函数,也不需要关于社区的先验信息。在我们的算法中,每个节点都用一个唯一的标签初始化,并且在每一步,每个节点采用其大多数邻居当前拥有的标签。在这个迭代过程中,紧密连接的节点组就一个唯一的标签达成共识以形成社区。我们通过将该算法应用于社区结构已知的网络来验证它。我们还证明该算法几乎采用线性时间,因此其计算成本比迄今为止可能的要低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验