Ciba Manuel, Petzold Marc, Alves Caroline L, Rodrigues Francisco A, Jimbo Yasuhiko, Thielemann Christiane
BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany.
Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo (USP), São Paulo, Brazil.
Sci Rep. 2025 Apr 30;15(1):15128. doi: 10.1038/s41598-025-99479-7.
Biosensors, such as microelectrode arrays that record in vitro neuronal activity, provide powerful platforms for studying neuroactive substances. This study presents a machine learning workflow to analyze drug-induced changes in neuronal biosensor data using complex network measures from graph theory. Microelectrode array recordings of neuronal networks exposed to bicuculline, a GABA[Formula: see text] receptor antagonist known to induce hypersynchrony, demonstrated the workflow's ability to detect and characterize pharmacological effects. The workflow integrates network-based features with synchrony, optimizing preprocessing parameters, including spike train bin sizes, segmentation window sizes, and correlation methods. It achieved high classification accuracy (AUC up to 90%) and used Shapley Additive Explanations to interpret feature importance rankings. Significant reductions in network complexity and segregation, hallmarks of epileptiform activity induced by bicuculline, were revealed. While bicuculline's effects are well established, this framework is designed to be broadly applicable for detecting both strong and subtle network alterations induced by neuroactive compounds. The results demonstrate the potential of this methodology for advancing biosensor applications in neuropharmacology and drug discovery.
生物传感器,如用于记录体外神经元活动的微电极阵列,为研究神经活性物质提供了强大的平台。本研究提出了一种机器学习工作流程,使用图论中的复杂网络度量来分析药物诱导的神经元生物传感器数据变化。用荷包牡丹碱(一种已知可诱导超同步的GABA[公式:见正文]受体拮抗剂)处理神经网络的微电极阵列记录,证明了该工作流程检测和表征药理作用的能力。该工作流程将基于网络的特征与同步性相结合,优化了预处理参数,包括尖峰序列分箱大小、分割窗口大小和相关方法。它实现了高分类准确率(AUC高达90%),并使用Shapley加法解释来解释特征重要性排名。揭示了网络复杂性和隔离性的显著降低,这是荷包牡丹碱诱导的癫痫样活动的特征。虽然荷包牡丹碱的作用已得到充分证实,但该框架旨在广泛适用于检测神经活性化合物诱导的强烈和微妙的网络改变。结果证明了这种方法在推进神经药理学和药物发现中的生物传感器应用方面的潜力。