Taccola Giuliano, Secchia Lucia, Ballanyi Klaus
Perinatal Research Centre, Department of Physiology, University of Alberta, Edmonton, AB, Canada T6G 2S2.
J Physiol. 2007 Dec 1;585(Pt 2):507-24. doi: 10.1113/jphysiol.2007.143594. Epub 2007 Oct 11.
The tolerance of breathing in neonates to oxygen depletion is reflected by persistence of inspiratory-related motor output during sustained anoxia in newborn rat brainstem preparations. It is not known whether lumbar motor networks innervating expiratory abdominal muscles are, in contrast, inhibited by anoxia similar to locomotor networks in neonatal mouse lumbar cords. To test this, we recorded inspiratory-related cervical/hypoglossal plus pre/postinspiratory lumbar/facial nerve activities and, sometimes simultaneously, locomotor rhythms in newborn rat brainstem-spinal cords. Chemical anoxia slowed 1 : 1-coupled cervical and lumbar respiratory rhythms and induced cervical burst doublets associated with depressed preinspiratory and augmented postinspiratory lumbar activities. Similarly, anoxia evoked repetitive hypoglossal bursts and shifted facial activity toward augmented postinspiratory bursting in medullas without spinal cord. Selective lumbar anoxia augmented pre/postinspiratory lumbar bursting without slowing the rhythm. This suggests a medullary origin of both anoxic inspiratory double bursts and preinspiratory depression, but a mixed medullary/lumbar origin of boosted postinspiratory lumbar activity. Lumbar respiratory rhythm is likely to be generated by the parafacial respiratory group expiratory centre as indicated by lack of normoxic and anoxic bursting following brainstem transection between the facial motonucleus and the more caudal pre-Bötzinger complex inspiratory centre. Opposed to sustained respiratory activities, anoxia reversibly abolished non-rhythmic spinal discharges and electrically or chemically evoked lumbar locomotor activities, followed by pronounced postanoxic spinal hyperexcitability. We hypothesize that (i) the anoxia tolerance of neonatal breathing includes pFRG-driven lumbar expiratory networks, (ii) the anoxic respiratory pattern transformation is due to disturbed inspiratory-expiratory centre interactions, and (iii) postanoxic lumbar hyperexcitability contributes to spasticity in cerebral palsy.
新生大鼠脑干制备物在持续缺氧期间与吸气相关的运动输出持续存在,这反映了新生儿对缺氧的呼吸耐受性。相比之下,支配呼气腹肌的腰运动网络是否像新生小鼠腰脊髓中的运动网络一样受到缺氧抑制,目前尚不清楚。为了验证这一点,我们记录了新生大鼠脑干脊髓中与吸气相关的颈/舌下神经加上吸气前/后腰/面神经活动,有时还同时记录了运动节律。化学性缺氧减慢了1:1耦合的颈和腰呼吸节律,并诱发了与吸气前抑制和吸气后腰活动增强相关的颈爆发双峰。同样,缺氧在没有脊髓的延髓中诱发了重复性舌下爆发,并使面部活动向吸气后爆发增强转变。选择性腰缺氧增强了吸气前/后腰爆发,而没有减慢节律。这表明缺氧性吸气双峰和吸气前抑制均起源于延髓,但吸气后腰活动增强则起源于延髓和腰髓混合。正如在面神经运动核和更靠尾侧的前包钦格复合体吸气中枢之间进行脑干横断后,缺乏常氧和缺氧爆发所表明的那样,腰呼吸节律可能由面神经旁呼吸组呼气中枢产生。与持续的呼吸活动相反,缺氧可逆地消除了非节律性脊髓放电以及电刺激或化学刺激诱发的腰运动活动,随后出现明显的缺氧后脊髓兴奋性过高。我们假设:(i)新生儿呼吸的缺氧耐受性包括由面神经旁呼吸组驱动的腰呼气网络;(ii)缺氧性呼吸模式转变是由于吸气-呼气中枢相互作用紊乱所致;(iii)缺氧后腰兴奋性过高导致脑瘫中的痉挛。