DiMaio Frank, Kondrashov Dmitry A, Bitto Eduard, Soni Ameet, Bingman Craig A, Phillips George N, Shavlik Jude W
Department of Computer Sciences, University of Wisconsin, Madison, WI 53706, USA.
Bioinformatics. 2007 Nov 1;23(21):2851-8. doi: 10.1093/bioinformatics/btm480. Epub 2007 Oct 12.
One bottleneck in high-throughput protein crystallography is interpreting an electron-density map, that is, fitting a molecular model to the 3D picture crystallography produces. Previously, we developed ACMI (Automatic Crystallographic Map Interpreter), an algorithm that uses a probabilistic model to infer an accurate protein backbone layout. Here, we use a sampling method known as particle filtering to produce a set of all-atom protein models. We use the output of ACMI to guide the particle filter's sampling, producing an accurate, physically feasible set of structures.
We test our algorithm on 10 poor-quality experimental density maps. We show that particle filtering produces accurate all-atom models, resulting in fewer chains, lower sidechain RMS error and reduced R factor, compared to simply placing the best-matching sidechains on ACMI's trace. We show that our approach produces a more accurate model than three leading methods--Textal, Resolve and ARP/WARP--in terms of main chain completeness, sidechain identification and crystallographic R factor.
Source code and experimental density maps available at http://ftp.cs.wisc.edu/machine-learning/shavlik-group/programs/acmi/
高通量蛋白质晶体学中的一个瓶颈是解释电子密度图,即将分子模型与晶体学产生的三维图像进行拟合。此前,我们开发了ACMI(自动晶体学图谱解释器),这是一种使用概率模型来推断精确蛋白质主链布局的算法。在这里,我们使用一种称为粒子滤波的采样方法来生成一组全原子蛋白质模型。我们使用ACMI的输出指导粒子滤波器的采样,从而生成一组准确且物理上可行的结构。
我们在10个质量较差的实验密度图上测试了我们的算法。我们表明,与简单地将最佳匹配侧链放置在ACMI的迹线上相比,粒子滤波能产生精确的全原子模型,从而减少链的数量、降低侧链均方根误差并降低R因子。我们表明,在主链完整性、侧链识别和晶体学R因子方面,我们的方法比三种领先方法——Textal、Resolve和ARP/WARP——产生的模型更准确。
源代码和实验密度图可在http://ftp.cs.wisc.edu/machine-learning/shavlik-group/programs/acmi/获取