Suppr超能文献

使用粒子滤波方法从电子密度图创建蛋白质模型。

Creating protein models from electron-density maps using particle-filtering methods.

作者信息

DiMaio Frank, Kondrashov Dmitry A, Bitto Eduard, Soni Ameet, Bingman Craig A, Phillips George N, Shavlik Jude W

机构信息

Department of Computer Sciences, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Bioinformatics. 2007 Nov 1;23(21):2851-8. doi: 10.1093/bioinformatics/btm480. Epub 2007 Oct 12.

Abstract

MOTIVATION

One bottleneck in high-throughput protein crystallography is interpreting an electron-density map, that is, fitting a molecular model to the 3D picture crystallography produces. Previously, we developed ACMI (Automatic Crystallographic Map Interpreter), an algorithm that uses a probabilistic model to infer an accurate protein backbone layout. Here, we use a sampling method known as particle filtering to produce a set of all-atom protein models. We use the output of ACMI to guide the particle filter's sampling, producing an accurate, physically feasible set of structures.

RESULTS

We test our algorithm on 10 poor-quality experimental density maps. We show that particle filtering produces accurate all-atom models, resulting in fewer chains, lower sidechain RMS error and reduced R factor, compared to simply placing the best-matching sidechains on ACMI's trace. We show that our approach produces a more accurate model than three leading methods--Textal, Resolve and ARP/WARP--in terms of main chain completeness, sidechain identification and crystallographic R factor.

AVAILABILITY

Source code and experimental density maps available at http://ftp.cs.wisc.edu/machine-learning/shavlik-group/programs/acmi/

摘要

动机

高通量蛋白质晶体学中的一个瓶颈是解释电子密度图,即将分子模型与晶体学产生的三维图像进行拟合。此前,我们开发了ACMI(自动晶体学图谱解释器),这是一种使用概率模型来推断精确蛋白质主链布局的算法。在这里,我们使用一种称为粒子滤波的采样方法来生成一组全原子蛋白质模型。我们使用ACMI的输出指导粒子滤波器的采样,从而生成一组准确且物理上可行的结构。

结果

我们在10个质量较差的实验密度图上测试了我们的算法。我们表明,与简单地将最佳匹配侧链放置在ACMI的迹线上相比,粒子滤波能产生精确的全原子模型,从而减少链的数量、降低侧链均方根误差并降低R因子。我们表明,在主链完整性、侧链识别和晶体学R因子方面,我们的方法比三种领先方法——Textal、Resolve和ARP/WARP——产生的模型更准确。

可用性

源代码和实验密度图可在http://ftp.cs.wisc.edu/machine-learning/shavlik-group/programs/acmi/获取

相似文献

1
Creating protein models from electron-density maps using particle-filtering methods.
Bioinformatics. 2007 Nov 1;23(21):2851-8. doi: 10.1093/bioinformatics/btm480. Epub 2007 Oct 12.
2
A probabilistic approach to protein backbone tracing in electron density maps.
Bioinformatics. 2006 Jul 15;22(14):e81-9. doi: 10.1093/bioinformatics/btl252.
3
Crystallographic protein model-building on the web.
Bioinformatics. 2007 Feb 1;23(3):375-7. doi: 10.1093/bioinformatics/btl584. Epub 2006 Nov 30.
4
Determining relevant features to recognize electron density patterns in x-ray protein crystallography.
J Bioinform Comput Biol. 2005 Jun;3(3):645-76. doi: 10.1142/s0219720005001272.
5
Probabilistic ensembles for improved inference in protein-structure determination.
J Bioinform Comput Biol. 2012 Feb;10(1):1240009. doi: 10.1142/S0219720012400094.
6
Weighting features to recognize 3D patterns of electron density in X-ray protein crystallography.
Proc IEEE Comput Syst Bioinform Conf. 2004:255-65. doi: 10.1109/csb.2004.1332439.
7
Determining protein structure from electron-density maps using pattern matching.
Acta Crystallogr D Biol Crystallogr. 2000 Jun;56(Pt 6):722-34. doi: 10.1107/s0907444900003450.
8
Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.
PLoS Comput Biol. 2015 Oct 27;11(10):e1004507. doi: 10.1371/journal.pcbi.1004507. eCollection 2015 Oct.
9
Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
Sci Rep. 2020 Mar 9;10(1):4282. doi: 10.1038/s41598-020-60598-y.

引用本文的文献

1
Kinematic Reconstruction of Cyclic Peptides and Protein Backbones from Partial Data.
J Chem Inf Model. 2021 Oct 25;61(10):4975-5000. doi: 10.1021/acs.jcim.1c00453. Epub 2021 Sep 27.
2
CryoEM-based hybrid modeling approaches for structure determination.
Curr Opin Microbiol. 2018 Jun;43:14-23. doi: 10.1016/j.mib.2017.10.002. Epub 2017 Nov 4.
4
Generative models of conformational dynamics.
Adv Exp Med Biol. 2014;805:87-105. doi: 10.1007/978-3-319-02970-2_4.
5
Probabilistic ensembles for improved inference in protein-structure determination.
J Bioinform Comput Biol. 2012 Feb;10(1):1240009. doi: 10.1142/S0219720012400094.
6
phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.
J Struct Funct Genomics. 2012 Jun;13(2):81-90. doi: 10.1007/s10969-012-9129-3. Epub 2012 Mar 15.
7
Structural characterization of human Uch37.
Proteins. 2012 Feb;80(2):649-54. doi: 10.1002/prot.23147. Epub 2011 Sep 26.
8
Rapid chain tracing of polypeptide backbones in electron-density maps.
Acta Crystallogr D Biol Crystallogr. 2010 Mar;66(Pt 3):285-94. doi: 10.1107/S0907444910000272. Epub 2010 Feb 12.
9
Rapid model building of beta-sheets in electron-density maps.
Acta Crystallogr D Biol Crystallogr. 2010 Mar;66(Pt 3):276-84. doi: 10.1107/S0907444910000302. Epub 2010 Feb 12.
10
Rapid model building of alpha-helices in electron-density maps.
Acta Crystallogr D Biol Crystallogr. 2010 Mar;66(Pt 3):268-75. doi: 10.1107/S0907444910000314. Epub 2010 Feb 12.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
3
Ensemble refinement of protein crystal structures: validation and application.
Structure. 2007 Sep;15(9):1040-52. doi: 10.1016/j.str.2007.06.019.
4
The Buccaneer software for automated model building. 1. Tracing protein chains.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002-11. doi: 10.1107/S0907444906022116. Epub 2006 Aug 19.
5
A probabilistic approach to protein backbone tracing in electron density maps.
Bioinformatics. 2006 Jul 15;22(14):e81-9. doi: 10.1093/bioinformatics/btl252.
6
Is one solution good enough?
Nat Struct Mol Biol. 2006 Mar;13(3):184-5; discussion 185. doi: 10.1038/nsmb0306-184.
7
The impact of structural genomics: expectations and outcomes.
Science. 2006 Jan 20;311(5759):347-51. doi: 10.1126/science.1121018.
8
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
9
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
10
The impact of structural genomics on the protein data bank.
Am J Pharmacogenomics. 2004;4(4):247-52. doi: 10.2165/00129785-200404040-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验