Suppr超能文献

机械应力通过肌动蛋白细胞骨架向粘着斑的传播:模型与实验

Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment.

作者信息

Paul Raja, Heil Patrick, Spatz Joachim P, Schwarz Ulrich S

机构信息

Bioquant, University of Heidelberg, Heidelberg, Germany.

出版信息

Biophys J. 2008 Feb 15;94(4):1470-82. doi: 10.1529/biophysj.107.108688. Epub 2007 Oct 12.

Abstract

We investigate both theoretically and experimentally how stress is propagated through the actin cytoskeleton of adherent cells and consequentially distributed at sites of focal adhesions (FAs). The actin cytoskeleton is modeled as a two-dimensional cable network with different lattice geometries. Both prestrain, resulting from actomyosin contractility, and central application of external force, lead to finite forces at the FAs that are largely independent of the lattice geometry, but strongly depend on the exact spatial distribution of the FAs. The simulation results compare favorably with experiments with adherent fibroblasts onto which lateral force is exerted using a microfabricated pillar. For elliptical cells, central application of external force along the long axis leads to two large stress regions located obliquely opposite to the pulling direction. For elliptical cells pulled along the short axis as well as for circular cells, there is only one region of large stress opposite to the direction of pull. If in the computer simulations FAs are allowed to rupture under force for elliptically elongated and circular cell shapes, then morphologies arise which are typical for migrating fibroblasts and keratocytes, respectively. The same effect can be obtained also by internally generated force, suggesting a mechanism by which cells can control their migration morphologies.

摘要

我们从理论和实验两方面研究了应力如何通过贴壁细胞的肌动蛋白细胞骨架进行传播,并最终分布在粘着斑(FAs)部位。肌动蛋白细胞骨架被建模为具有不同晶格几何形状的二维电缆网络。由肌动球蛋白收缩性产生的预应变以及外力的中心施加,都会导致粘着斑处产生有限的力,这些力在很大程度上与晶格几何形状无关,但强烈依赖于粘着斑的精确空间分布。模拟结果与使用微加工柱对贴壁成纤维细胞施加侧向力的实验结果吻合良好。对于椭圆形细胞,沿长轴施加外力会导致在与牵拉方向斜对角的位置出现两个大应力区域。对于沿短轴牵拉的椭圆形细胞以及圆形细胞,在牵拉方向的相反位置只有一个大应力区域。如果在计算机模拟中允许粘着斑在力的作用下破裂,对于椭圆形拉长和圆形的细胞形状,分别会出现典型的迁移成纤维细胞和角膜细胞的形态。通过内部产生的力也可以获得相同的效果,这表明细胞可以通过这种机制控制其迁移形态。

相似文献

1
Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment.
Biophys J. 2008 Feb 15;94(4):1470-82. doi: 10.1529/biophysj.107.108688. Epub 2007 Oct 12.
2
Assembly and mechanosensory function of focal adhesions: experiments and models.
Eur J Cell Biol. 2006 Apr;85(3-4):165-73. doi: 10.1016/j.ejcb.2005.11.001. Epub 2005 Dec 19.
3
Focal adhesions as mechanosensors: the two-spring model.
Biosystems. 2006 Feb-Mar;83(2-3):225-32. doi: 10.1016/j.biosystems.2005.05.019. Epub 2005 Oct 19.
4
Force-induced adsorption and anisotropic growth of focal adhesions.
Biophys J. 2006 May 15;90(10):3469-84. doi: 10.1529/biophysj.105.074377. Epub 2006 Mar 2.
5
Computational Tension Mapping of Adherent Cells Based on Actin Imaging.
PLoS One. 2016 Jan 26;11(1):e0146863. doi: 10.1371/journal.pone.0146863. eCollection 2016.
6
Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics.
J Phys Condens Matter. 2010 May 19;22(19):194108. doi: 10.1088/0953-8984/22/19/194108. Epub 2010 Apr 26.
7
The mechanochemistry of cytoskeletal force generation.
Biomech Model Mechanobiol. 2015 Jan;14(1):59-72. doi: 10.1007/s10237-014-0588-2. Epub 2014 May 6.
8
Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6933-8. doi: 10.1073/pnas.1117810109. Epub 2012 Apr 16.
10
In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
J Biomech. 2016 Sep 6;49(13):2625-2634. doi: 10.1016/j.jbiomech.2016.05.031. Epub 2016 Jun 4.

引用本文的文献

1
Dynamic mechanisms for membrane skeleton transitions.
J Cell Sci. 2025 Feb 15;138(4). doi: 10.1242/jcs.263473. Epub 2025 Feb 28.
2
From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission.
Front Cell Dev Biol. 2024 Aug 13;12:1444827. doi: 10.3389/fcell.2024.1444827. eCollection 2024.
4
Dynamic mechanisms for membrane skeleton transitions.
bioRxiv. 2024 May 2:2024.04.29.591779. doi: 10.1101/2024.04.29.591779.
5
Proposing a Caputo-Land System for active tension. Capturing variable viscoelasticity.
Heliyon. 2024 Feb 13;10(4):e26143. doi: 10.1016/j.heliyon.2024.e26143. eCollection 2024 Feb 29.
6
Recent advances in single-cell subcellular sampling.
Chem Commun (Camb). 2023 May 2;59(36):5312-5328. doi: 10.1039/d3cc00573a.
7
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction.
Commun Biol. 2022 Sep 27;5(1):1022. doi: 10.1038/s42003-022-03980-y.
8
Elasticity of podosome actin networks produces nanonewton protrusive forces.
Nat Commun. 2022 Jul 4;13(1):3842. doi: 10.1038/s41467-022-30652-6.
9
Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction.
Front Cell Dev Biol. 2022 Feb 9;10:789841. doi: 10.3389/fcell.2022.789841. eCollection 2022.
10
Two Complementary Signaling Pathways Depict Eukaryotic Chemotaxis: A Mechanochemical Coupling Model.
Front Cell Dev Biol. 2021 Nov 17;9:786254. doi: 10.3389/fcell.2021.786254. eCollection 2021.

本文引用的文献

1
Soft matters in cell adhesion: rigidity sensing on soft elastic substrates.
Soft Matter. 2007 Feb 14;3(3):263-266. doi: 10.1039/b606409d.
2
Nonequilibrium mechanics of active cytoskeletal networks.
Science. 2007 Jan 19;315(5810):370-3. doi: 10.1126/science.1134404.
3
Local force and geometry sensing regulate cell functions.
Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75. doi: 10.1038/nrm1890.
4
Stiff polymers, foams, and fiber networks.
Phys Rev Lett. 2006 Jan 13;96(1):017802. doi: 10.1103/PhysRevLett.96.017802. Epub 2006 Jan 9.
5
Microtubule gliding and cross-linked microtubule networks on micropillar interfaces.
Nano Lett. 2005 Dec;5(12):2630-4. doi: 10.1021/nl051865j.
6
Tissue cells feel and respond to the stiffness of their substrate.
Science. 2005 Nov 18;310(5751):1139-43. doi: 10.1126/science.1116995.
7
Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells.
J Biomech. 2006;39(14):2603-10. doi: 10.1016/j.jbiomech.2005.08.026. Epub 2005 Oct 10.
8
Emergent patterns of growth controlled by multicellular form and mechanics.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11594-9. doi: 10.1073/pnas.0502575102. Epub 2005 Jul 27.
9
Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
Biophys J. 2005 May;88(5):3707-19. doi: 10.1529/biophysj.104.047332. Epub 2005 Mar 4.
10
Force mapping in epithelial cell migration.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2390-5. doi: 10.1073/pnas.0408482102. Epub 2005 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验