Mohanty Pranab, Sarkar Sudeep, Kasturi Rangachar
Computer Science and Engineering Department, University of South Florida, FL 33620-5399, USA.
IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2065-78. doi: 10.1109/TPAMI.2007.1129.
Regeneration of templates from match scores has security and privacy implications related to any biometric authentication system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the distances computed by a face recognition algorithm between two faces by distances between points, representing these faces, in an affine space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine (non-orthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three, fundamentally different, face recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we select face templates from two different databases: Face Recognition Grand Challenge (FRGC) and Facial Recognition Technology (FERET) Database (FERET). With an operational point set at 1 percent False Acceptance Rate (FAR) and 99 percent True Acceptance Rate (TAR) for 1,196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a 73 percent chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With similar operational set up, we achieve a 72 percent and 100 percent chance of breaking in for the Bayesian and PCA based face recognition systems, respectively. With three different levels of score quantization, we achieve 69 percent, 68 percent and 49 percent probability of break-in, indicating the robustness of our proposed scheme to score quantization. We also show that the proposed reconstruction scheme has 47 percent more probability of breaking in as a randomly chosen target subject for the commercial system as compared to a hill climbing approach with the same number of attempts. Given that the proposed template reconstruction method uses distinct face templates to reconstruct faces, this work exposes a more severe form of vulnerability than a hill climbing kind of attack where incrementally different versions of the same face are used. Also, the ability of the proposed approach to reconstruct actual face templates of the users increases privacy concerns in biometric systems.
从匹配分数中再生模板对任何生物特征认证系统都有安全和隐私方面的影响。我们提出了一种新颖的范式,使用线性方法从匹配分数中重建面部模板。该方法首先通过仿射变换对给定的人脸识别算法的行为进行建模。建模的目标是通过仿射空间中表示这些面部的点之间的距离,来近似人脸识别算法计算的两张面部之间的距离。给定这个空间,来自独立图像集(闯入集)的模板仅与目标对象的注册模板匹配一次,并记录匹配分数。然后使用这些分数将目标对象嵌入到近似的仿射(非正交)空间中。给定目标对象在仿射空间中的坐标,使用仿射变换的逆变换来重建目标对象的原始模板。我们使用三种根本不同的人脸识别算法来证明我们的想法:采用马氏余弦距离度量的主成分分析(PCA)、贝叶斯个人内-个人外分类器(BIC)以及一种基于特征的商业算法。为了证明闯入集与图库集的独立性,我们从两个不同的数据库中选择面部模板:人脸识别大挑战(FRGC)和人脸识别技术(FERET)数据库(FERET)。对于1196次注册(FERET图库),操作点设置为1%的误识率(FAR)和99%的正确识率(TAR),我们表明,对于商业人脸识别系统,作为随机选择的目标对象,最多需要600次尝试(分数计算)才能有73%的闯入机会。在类似的操作设置下,对于基于贝叶斯和PCA的人脸识别系统,我们分别实现了72%和100%的闯入机会。通过三种不同级别的分数量化,我们实现了69%、68%和49%的闯入概率,表明我们提出的方案对分数量化具有鲁棒性。我们还表明,与具有相同尝试次数的爬山方法相比,对于商业系统,作为随机选择的目标对象,所提出的重建方案的闯入概率要高47%。鉴于所提出的模板重建方法使用不同的面部模板来重建面部,这项工作揭示了一种比爬山式攻击更严重的漏洞形式,在爬山式攻击中使用的是同一面部的逐渐不同版本。此外,所提出的方法重建用户实际面部模板的能力增加了生物特征系统中的隐私担忧。