Prince Simon J D, Elder James H, Warrell Jonathan, Felisberti Fatima M
Department of Computer Sciences, University College London, London, UK.
IEEE Trans Pattern Anal Mach Intell. 2008 Jun;30(6):970-84. doi: 10.1109/TPAMI.2008.48.
Face recognition algorithms perform very unreliably when the pose of the probe face is different from the gallery face: typical feature vectors vary more with pose than with identity. We propose a generative model that creates a one-to-many mapping from an idealized "identity" space to the observed data space. In identity space, the representation for each individual does not vary with pose. We model the measured feature vector as being generated by a pose-contingent linear transformation of the identity variable in the presence of Gaussian noise. We term this model "tied" factor analysis. The choice of linear transformation (factors) depends on the pose, but the loadings are constant (tied) for a given individual. We use the EM algorithm to estimate the linear transformations and the noise parameters from training data. We propose a probabilistic distance metric which allows a full posterior over possible matches to be established. We introduce a novel feature extraction process and investigate recognition performance using the FERET, XM2VTS and PIE databases. Recognition performance compares favourably to contemporary approaches.
当探测人脸的姿态与图库人脸的姿态不同时,人脸识别算法的表现非常不可靠:典型的特征向量随姿态的变化比随身份的变化更大。我们提出了一种生成模型,该模型创建了从理想化的“身份”空间到观测数据空间的一对多映射。在身份空间中,每个个体的表示不随姿态变化。我们将测量到的特征向量建模为由身份变量在高斯噪声存在下的姿态相关线性变换生成。我们将此模型称为“绑定”因子分析。线性变换(因子)的选择取决于姿态,但对于给定个体,载荷是恒定的(绑定的)。我们使用期望最大化(EM)算法从训练数据中估计线性变换和噪声参数。我们提出了一种概率距离度量,它允许建立关于可能匹配的完整后验。我们引入了一种新颖的特征提取过程,并使用FERET、XM2VTS和PIE数据库研究识别性能。识别性能与当代方法相比具有优势。