Suppr超能文献

通过在线动态空间偏差外观模型实现鲁棒目标跟踪

Robust object tracking via online dynamic spatial bias appearance models.

作者信息

Chen Datong, Yang Jie

机构信息

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2157-69. doi: 10.1109/TPAMI.2007.1134.

Abstract

This paper presents a robust object tracking method via a spatial bias appearance model learned dynamically in video. Motivated by the attention shifting among local regions of a human vision system during object tracking, we propose to partition an object into regions with different confidences and track the object using a dynamic spatial bias appearance model (DSBAM) estimated from region confidences. The confidence of a region is estimated to re ect the discriminative power of the region in a feature space, and the probability of occlusion. We propose a novel hierarchical Monte Carlo (HAMC) algorithm to learn region confidences dynamically in every frame. The algorithm consists of two levels of Monte Carlo processes implemented using two particle filtering procedures at each level and can efficiently extract high confidence regions through video frames by exploiting the temporal consistency of region confidences. A dynamic spatial bias map is then generated from the high confidence regions, and is employed to adapt the appearance model of the object and to guide a tracking algorithm in searching for correspondences in adjacent frames of video images. We demonstrate feasibility of the proposed method in video surveillance applications. The proposed method can be combined with many other existing tracking systems to enhance the robustness of these systems.

摘要

本文提出了一种通过在视频中动态学习的空间偏差外观模型进行鲁棒目标跟踪的方法。受目标跟踪过程中人类视觉系统局部区域间注意力转移的启发,我们建议将目标划分为具有不同置信度的区域,并使用根据区域置信度估计的动态空间偏差外观模型(DSBAM)来跟踪目标。估计区域的置信度以反映该区域在特征空间中的判别能力以及遮挡概率。我们提出了一种新颖的分层蒙特卡罗(HAMC)算法,用于在每一帧中动态学习区域置信度。该算法由两级蒙特卡罗过程组成,每一级都使用两个粒子滤波程序实现,并且可以通过利用区域置信度的时间一致性,在视频帧中高效地提取高置信度区域。然后从高置信度区域生成动态空间偏差图,并用于调整目标的外观模型,以及指导跟踪算法在视频图像的相邻帧中搜索对应关系。我们在视频监控应用中证明了该方法的可行性。该方法可以与许多其他现有的跟踪系统相结合,以增强这些系统的鲁棒性。

相似文献

1
Robust object tracking via online dynamic spatial bias appearance models.
IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2157-69. doi: 10.1109/TPAMI.2007.1134.
2
A lattice-based MRF model for dynamic near-regular texture tracking.
IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):777-92. doi: 10.1109/TPAMI.2007.1053.
3
Robust shape tracking with multiple models in ultrasound images.
IEEE Trans Image Process. 2008 Mar;17(3):392-406. doi: 10.1109/TIP.2007.915552.
4
Visual tracking in high-dimensional state space by appearance-guided particle filtering.
IEEE Trans Image Process. 2008 Jul;17(7):1154-67. doi: 10.1109/TIP.2008.924283.
5
Contour-based object tracking with occlusion handling in video acquired using mobile cameras.
IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1531-6. doi: 10.1109/TPAMI.2004.96.
6
Tracking by third-order tensor representation.
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):385-96. doi: 10.1109/TSMCB.2010.2056366. Epub 2010 Aug 16.
7
Adaptive object tracking based on an effective appearance filter.
IEEE Trans Pattern Anal Mach Intell. 2007 Sep;29(9):1661-7. doi: 10.1109/TPAMI.2007.1112.
8
Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans.
IEEE Trans Pattern Anal Mach Intell. 2008 Oct;30(10):1728-40. doi: 10.1109/TPAMI.2008.73.
9
Depth map calculation for a variable number of moving objects using markov sequential object processes.
IEEE Trans Pattern Anal Mach Intell. 2008 Jul;30(7):1308-12. doi: 10.1109/TPAMI.2008.45.
10
Tracking of multiple targets using online learning for reference model adaptation.
IEEE Trans Syst Man Cybern B Cybern. 2008 Dec;38(6):1465-75. doi: 10.1109/TSMCB.2008.927281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验