Suppr超能文献

作为时空形态的行动。

Actions as space-time shapes.

作者信息

Gorelick Lena, Blank Moshe, Shechtman Eli, Irani Michal, Basri Ronen

机构信息

Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Israel.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2247-53. doi: 10.1109/TPAMI.2007.70711.

Abstract

Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach for analyzing 2D shapes and generalize it to deal with volumetric space-time action shapes. Our method utilizes properties of the solution to the Poisson equation to extract space-time features such as local space-time saliency, action dynamics, shape structure and orientation. We show that these features are useful for action recognition, detection and clustering. The method is fast, does not require video alignment and is applicable in (but not limited to) many scenarios where the background is known. Moreover, we demonstrate the robustness of our method to partial occlusions, non-rigid deformations, significant changes in scale and viewpoint, high irregularities in the performance of an action, and low quality video.

摘要

视频序列中的人体动作可视为正在进行关节运动的移动躯干和突出肢体的轮廓。我们将人体动作视为时空体积中由轮廓诱导的三维形状。我们采用一种最近用于分析二维形状的方法,并将其推广以处理体时空动作形状。我们的方法利用泊松方程解的性质来提取时空特征,如局部时空显著性、动作动力学、形状结构和方向。我们表明这些特征对动作识别、检测和聚类很有用。该方法速度快,不需要视频对齐,适用于(但不限于)许多背景已知的场景。此外,我们证明了我们的方法对部分遮挡、非刚性变形、尺度和视角的显著变化、动作表现中的高度不规则性以及低质量视频具有鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验