Department of Computing Science, Nanjing Forestry University, 210037 Nanjing, China.
IEEE Trans Image Process. 2011 Jun;20(6):1725-38. doi: 10.1109/TIP.2010.2102043. Epub 2010 Dec 23.
This paper addresses the problem of automatically analyzing and understanding human actions from video footage. An "action correlation" framework, elastic sequence correlation (ESC), is proposed to identify action subsequences from a database of (possibly long) video sequences that are similar to a given query video action clip. In particular, we show that two well-known algorithms, namely approximate pattern matching in computer and information sciences and dynamic time warping (DTW) method in signal processing, are special cases of our ESC framework. The proposed framework is applied to two important real-world applications: action pattern retrieval, as well as action segmentation and recognition, where, on average, its run time speed (in matlab) is about 3.3 frames per second. In addition, comparing with the state-of-the-art algorithms on a number of challenging data sets, our approach is demonstrated to perform competitively.
本文解决了从视频片段中自动分析和理解人类动作的问题。提出了一种“动作关联”框架,即弹性序列关联(ESC),用于从可能很长的视频序列数据库中识别与给定查询视频动作片段相似的动作子序列。特别地,我们表明,两个著名的算法,即计算机和信息科学中的近似模式匹配以及信号处理中的动态时间规整(DTW)方法,是我们 ESC 框架的特例。所提出的框架应用于两个重要的现实世界应用:动作模式检索以及动作分割和识别,其中,其平均运行时速度(在 matlab 中)约为每秒 3.3 帧。此外,与一些具有挑战性的数据集上的最新算法相比,我们的方法表现出了竞争力。