Spiessl S M, MacQuarrie K T B, Mayer K U
Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Rd., Vancouver, BC, Canada V6T 1Z4.
J Contam Hydrol. 2008 Jan 28;95(3-4):141-53. doi: 10.1016/j.jconhyd.2007.09.002. Epub 2007 Sep 15.
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks.
在加拿大地盾的结晶岩中,目前在500 - 1000米深度的地球化学条件呈还原状态。然而,在未来的冰川期,水文条件的改变可能会导致含有相对高浓度溶解氧(O₂)的冰川融水补给增加。因此,研究包括自然发生的氧化还原反应在内的可能控制氧气进入的物理和地球化学过程具有重要意义。在本研究中,反应输运代码MIN3P与二因素分析相结合,以确定控制裂隙结晶岩中氧气迁移和衰减的最重要参数。所考虑的情景基于简化的概念模型,包括一个单一的垂直裂隙或一个裂隙带,包含在从地表延伸至500米深度的岩石基质中。与现场观测结果一致,含Fe(II)的矿物存在于裂隙(即绿泥石)和岩石基质(黑云母和少量黄铁矿)中。对于所研究的参数范围,结果表明,对于单一裂隙情况,控制溶解氧进入的最有影响的因素是裂隙中的流速、裂隙开度以及岩石基质中的黑云母反应速率。裂隙带模拟的最重要参数是各裂隙中的流速、补给水中的pO₂、黑云母反应速率,以及在较小程度上裂隙带中绿泥石的丰度和反应性,还有裂隙带宽度。因此,在场地特征描述以及制定旨在预测结晶岩中氧气行为的特定场地模型时,应更多地考虑这些参数。