Nakano Toshiaki, Morishita Soh, Katafuchi Atsushi, Matsubara Mayumi, Horikawa Yusuke, Terato Hiroaki, Salem Amir M H, Izumi Shunsuke, Pack Seung Pil, Makino Keisuke, Ide Hiroshi
Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
Mol Cell. 2007 Oct 12;28(1):147-58. doi: 10.1016/j.molcel.2007.07.029.
DNA-protein crosslinks (DPCs)-where proteins are covalently trapped on the DNA strand-block the progression of replication and transcription machineries and hence hamper the faithful transfer of genetic information. However, the repair mechanism of DPCs remains largely elusive. Here we have analyzed the roles of nucleotide excision repair (NER) and homologous recombination (HR) in the repair of DPCs both in vitro and in vivo using a bacterial system. Several lines of biochemical and genetic evidence show that both NER and HR commit to the repair or tolerance of DPCs, but differentially. NER repairs DPCs with crosslinked proteins of sizes less than 12-14 kDa, whereas oversized DPCs are processed exclusively by RecBCD-dependent HR. These results highlight how NER and HR are coordinated when cells need to deal with unusually bulky DNA lesions such as DPCs.
DNA-蛋白质交联(DPCs)——蛋白质被共价捕获在DNA链上——会阻碍复制和转录机器的进程,从而妨碍遗传信息的忠实传递。然而,DPCs的修复机制在很大程度上仍然不清楚。在这里,我们使用细菌系统在体外和体内分析了核苷酸切除修复(NER)和同源重组(HR)在DPCs修复中的作用。多条生化和遗传证据表明,NER和HR都参与了DPCs的修复或耐受,但方式不同。NER修复与大小小于12-14 kDa的交联蛋白形成的DPCs,而超大的DPCs则完全由RecBCD依赖的HR处理。这些结果突出了细胞在需要处理诸如DPCs等异常大的DNA损伤时,NER和HR是如何协调的。