Kreplak Laurent, Wang Huaibin, Aebi Ueli, Kong Xiang-Peng
M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
J Mol Biol. 2007 Nov 23;374(2):365-73. doi: 10.1016/j.jmb.2007.09.040. Epub 2007 Sep 20.
The mammalian urothelium apical surface plays important roles in bladder physiology and diseases, and it provides a unique morphology for ultrastructural studies. Atomic force microscopy (AFM) is an emerging tool for studying the architecture and dynamic properties of biomolecular structures under near-physiological conditions. However, AFM imaging of soft tissues remains a challenge because of the lack of efficient methods for sample stabilization. Using a porous nitrocellulose membrane as the support, we were able to immobilize large pieces of soft mouse bladder tissue, thus enabling us to carry out the first AFM investigation of the mouse urothelial surface. The submicrometer-resolution AFM images revealed many details of the surface features, including the geometry of the urothelial plaques that cover the entire surface and the membrane interdigitation at the cell borders. This interdigitation creates a membrane zipper, likely contributing to the barrier function of the urothelium. In addition, we were able to image the intracellular bacterial communities of type 1-fimbriated bacteria grown between the intermediate filament bundles of the umbrella cells, shedding light on the bacterial colonization of the urothelium.
哺乳动物尿路上皮的顶端表面在膀胱生理和疾病中发挥着重要作用,并且为超微结构研究提供了独特的形态。原子力显微镜(AFM)是一种用于在近生理条件下研究生物分子结构的结构和动态特性的新兴工具。然而,由于缺乏有效的样品稳定方法,软组织的AFM成像仍然是一个挑战。使用多孔硝酸纤维素膜作为支撑,我们能够固定大片柔软的小鼠膀胱组织,从而使我们能够对小鼠尿路上皮表面进行首次AFM研究。亚微米分辨率的AFM图像揭示了表面特征的许多细节,包括覆盖整个表面的尿路上皮斑块的几何形状以及细胞边界处的膜交错。这种交错形成了一个膜拉链,可能有助于尿路上皮的屏障功能。此外,我们能够对生长在伞细胞中间丝束之间的1型菌毛细菌的细胞内细菌群落进行成像,从而揭示了尿路上皮的细菌定植情况。