Reininger A J
Labor für Immungenetik und Molekulare Diagnostik, Abt. Transfusionsmedizin und Hämostaseologie, Klinikum der Universität München, Max-Lebsche-Platz 32, 81377 München.
Hamostaseologie. 2007 Sep;27(4):247-50.
Haemostasis is the concerted action of blood components aimed at prevention of blood loss after vessel injury. Thrombosis is the other side of the coin, a misled physiological process, i.e. a haemostatic reaction occurring at a diseased vessel wall. Haemodynamic forces enrich platelets in a fluid boundary layer adjacent to the vessel wall where they flow along the endothelium scanning it for defects. Once the platelets detect an injury they immediately adhere--a process beginning with initial deceleration and attachment via glykoprotein (GP) Ibalpha receptor-binding to immobilized von Willebrand factor (VWF). The GPIb receptor requires no stimulation. This is in contrast to subsequently interacting receptors such as integrin alphaIIbbeta3 (GPIIb/IIIa), integrin alpha2beta1, and GP VI, which are activated via outside-in and inside-out signalling. The latter receptors bind to their respective ligands: VWF, fibrinogen, collagen and other subendothelial proteins. Upon the first layer of adherent platelets additional accrual of platelets is transient when mediated by VWF, but is then stabilized by fibrinogen bridging integrin alphaIIbbeta3 receptors on neighboring platelets. Such aggregates present a large mass of procoagulant membranes, the surface of which serves for complexation and activation of clotting factors. Thereby fibrin polymerization is accelerated manyfold. In addition, platelets contain mRNA for fast production of tissue factor, the most effective trigger of extrinsic coagulation. The formed fibrin fibers stabilize the platelet aggregates against detachment by shear forces. A shortened clotting time probably due to activated membranes was also found with microparticles generated at high shear rates through GPIb-VWF-interaction. Thus, platelets and platelet derived microparticles seem to play an important role not only in focussing the haemostatic response to the region of injury but also in initiating and accelerating the subsequent clotting reaction.
止血是血液成分协同作用,旨在防止血管损伤后失血。血栓形成则是其反面,是一种误导性的生理过程,即在病变血管壁发生的止血反应。血流动力学力量使血小板在靠近血管壁的流体边界层中富集,它们沿着内皮细胞流动,扫描内皮细胞有无缺陷。一旦血小板检测到损伤,它们会立即黏附——这个过程始于最初的减速,并通过糖蛋白(GP)Ibalpha受体与固定的血管性血友病因子(VWF)结合而附着。GPIb受体无需刺激。这与随后相互作用的受体如整合素alphaIIbbeta3(GPIIb/IIIa)、整合素alpha2beta1和GP VI形成对比,后者通过外向内和内向外交联信号被激活。后一种受体与其各自的配体结合:VWF、纤维蛋白原、胶原蛋白和其他内皮下蛋白。在第一层黏附的血小板上,当由VWF介导时,血小板的额外聚集是短暂的,但随后通过纤维蛋白原桥接相邻血小板上的整合素alphaIIbbeta3受体而稳定下来。这种聚集体呈现出大量促凝血膜,其表面用于凝血因子的复合和激活。由此,纤维蛋白聚合加速了许多倍。此外,血小板含有用于快速产生组织因子的mRNA,组织因子是外源性凝血最有效的触发因子。形成的纤维蛋白纤维稳定血小板聚集体,防止其因剪切力而分离。在通过GPIb-VWF相互作用在高剪切速率下产生的微粒中,也发现了可能由于活化膜导致的凝血时间缩短。因此,血小板和血小板衍生的微粒似乎不仅在将止血反应集中到损伤区域方面发挥重要作用,而且在启动和加速随后的凝血反应中也发挥重要作用。